Skip to main content

Research Repository

Advanced Search

All Outputs (7)

Microporous metallic scaffolds supported liquid infused icephobic construction (2022)
Journal Article
Wu, M., Wang, J., Ling, S., Wheatley, R., & Hou, X. (2023). Microporous metallic scaffolds supported liquid infused icephobic construction. Journal of Colloid and Interface Science, 634, 369-378. https://doi.org/10.1016/j.jcis.2022.12.034

Hypothesis: Ice accretion on component surfaces often causes severe impacts or accidents. Liquid-infused surfaces (LIS) have drawn much attention as icephobic materials for ice mitigation in recent years due to their outstanding icephobicity. However... Read More about Microporous metallic scaffolds supported liquid infused icephobic construction.

Cage Molecules Stabilize Lead Halide Perovskite Thin Films (2022)
Journal Article
Sun, S., Liu, M., Thapa, J., Hartono, N. T. P., Zhao, Y., He, D., …Buonassisi, T. (2022). Cage Molecules Stabilize Lead Halide Perovskite Thin Films. Chemistry of Materials, 34(21), 9384–9391. https://doi.org/10.1021/acs.chemmater.2c01502

The environmental stability of hybrid organic-inorganic perovskite (HOIP) materials needs to increase, to enable their widespread adoption in thin-film solar and optoelectronic devices. Molecular additives emerged recently as an effective strategy to... Read More about Cage Molecules Stabilize Lead Halide Perovskite Thin Films.

Fundamentals of hydrogen storage in nanoporous materials (2022)
Journal Article
Zhang, L., Allendorf, M. D., Balderas-Xicohténcatl, R., Broom, D. P., Fanourgakis, G. S., Froudakis, G. E., …Hirscher, M. (2022). Fundamentals of hydrogen storage in nanoporous materials. Progress in Energy, 4(4), Article 042013. https://doi.org/10.1088/2516-1083/ac8d44

Physisorption of hydrogen in nanoporous materials offers an efficient and competitive alternative for hydrogen storage. At low temperatures (e.g. 77 K) and moderate pressures (below 100 bar) molecular H2 adsorbs reversibly, with very fast kinetics, a... Read More about Fundamentals of hydrogen storage in nanoporous materials.

Hydrogen-Induced Conversion of SnS2 into SnS or Sn: A Route to Create SnS2/SnS Heterostructures (2022)
Journal Article
Patanè, A., Felton, J., Blundo, E., Kudrynskyi, Z., Ling, S., Bradford, J., …Patane, A. (2022). Hydrogen-Induced Conversion of SnS2 into SnS or Sn: A Route to Create SnS2/SnS Heterostructures. Small, 18(33), Article 2202661. https://doi.org/10.1002/smll.202202661

The family of van der Waals (vdW) materials is large and diverse with applications ranging from electronics and optoelectronics to catalysis and chemical storage. However, despite intensive research, there remains significant knowledge-gaps pertainin... Read More about Hydrogen-Induced Conversion of SnS2 into SnS or Sn: A Route to Create SnS2/SnS Heterostructures.

Magnesium- and intermetallic alloys-based hydrides for energy storage: Modelling, synthesis and properties (2022)
Journal Article
Pasquini, L., Sakaki, K., Akiba, E., Allendorf, M. D., Alvares, E., Ares, J. R., …Yartys, V. A. (2022). Magnesium- and intermetallic alloys-based hydrides for energy storage: Modelling, synthesis and properties. Progress in Energy, 4(3), Article 032007. https://doi.org/10.1088/2516-1083/ac7190

Hydrides based on magnesium and intermetallic compounds provide a viable solution to the challenge of energy storage from renewable sources, thanks to their ability to absorb and desorb hydrogen in a reversible way with a proper tuning of pressure an... Read More about Magnesium- and intermetallic alloys-based hydrides for energy storage: Modelling, synthesis and properties.

Docking rings in a solid: reversible assembling of pseudorotaxanes inside a zirconium metal–organic framework (2022)
Journal Article
Li, X., Xie, J., Du, Z., Jiang, L., Li, G., Ling, S., & Zhu, K. (2022). Docking rings in a solid: reversible assembling of pseudorotaxanes inside a zirconium metal–organic framework. Chemical Science, 13(21), 6291-6296. https://doi.org/10.1039/d2sc01497a

An unprecedented zirconium metal–organic framework featuring a T-shaped benzimidazole strut was constructed and employed as a sponge-like material for selective absorption of macrocyclic guests. The neutral benzimidazole domain of the as-synthesized... Read More about Docking rings in a solid: reversible assembling of pseudorotaxanes inside a zirconium metal–organic framework.

Supramolecular Proton Conductors Self-Assembled by Organic Cages (2022)
Journal Article
Yang, Z., Zhang, N., Lei, L., Yu, C., Ding, J., Li, P., …Zhang, S. (2022). Supramolecular Proton Conductors Self-Assembled by Organic Cages. JACS Au, 2(4), 819-826. https://doi.org/10.1021/jacsau.1c00556

Proton conduction is vital for living systems to execute various physiological activities. The understanding of its mechanism is also essential for the development of state-of-the-art applications, including fuel-cell technology. We herein present a... Read More about Supramolecular Proton Conductors Self-Assembled by Organic Cages.