Skip to main content

Research Repository

Advanced Search

All Outputs (118)

An imidazolium-based supramolecular gelator enhancing interlayer adhesion in 3D printed dual network hydrogels (2021)
Journal Article
Zhou, Z., Samperi, M., Santu, L., Dizon, G., Aboarkaba, S., Limón, D., …Wildman, R. (2021). An imidazolium-based supramolecular gelator enhancing interlayer adhesion in 3D printed dual network hydrogels. Materials and Design, 206, Article 109792. https://doi.org/10.1016/j.matdes.2021.109792

The variety of UV-curable monomers for 3D printing is limited by a requirement for rapid curing after each sweep depositing a layer. This study proposes to trigger supramolecular self-assembly during the process by a gemini imidazolium-based low-mole... Read More about An imidazolium-based supramolecular gelator enhancing interlayer adhesion in 3D printed dual network hydrogels.

UV-curable silicone materials with tuneable mechanical properties for 3D printing (2021)
Journal Article
Foerster, A., Annarasa, V., Terry, A., Wildman, R., Hague, R., Irvine, D., …Tuck, C. (2021). UV-curable silicone materials with tuneable mechanical properties for 3D printing. Materials and Design, 205, Article 109681. https://doi.org/10.1016/j.matdes.2021.109681

In this paper, we present the development of a family of novel, UV-curable, highly flexible, 3D printable silicone-based materials, the mechanical properties of which can be tuned simply by varying the ratio of the polymerisable reagents within the f... Read More about UV-curable silicone materials with tuneable mechanical properties for 3D printing.

Universal mobility characteristics of graphene originating from charge scattering by ionised impurities (2021)
Journal Article
Gosling, J. H., Makarovsky, O., Wang, F., Cottam, N. D., Greenaway, M. T., Patanè, A., …Fromhold, T. M. (2021). Universal mobility characteristics of graphene originating from charge scattering by ionised impurities. Communications Physics, 4(1), Article 30. https://doi.org/10.1038/s42005-021-00518-2

Pristine graphene and graphene-based heterostructures can exhibit exceptionally high electron mobility if their surface contains few electron-scattering impurities. Mobility directly influences electrical conductivity and its dependence on the carrie... Read More about Universal mobility characteristics of graphene originating from charge scattering by ionised impurities.

Additively manufactured ultra-high vacuum chamber for portable quantum technologies (2021)
Journal Article
Cooper, N., Coles, L., Everton, S., Maskery, I., Campion, R., Madkhaly, S., …Hackermüller, L. (2021). Additively manufactured ultra-high vacuum chamber for portable quantum technologies. Additive Manufacturing, 40, Article 101898. https://doi.org/10.1016/j.addma.2021.101898

© 2021 Additive manufacturing is having a dramatic impact on research and industry across multiple sectors, but the production of additively manufactured systems for ultra-high vacuum applications has so far proved elusive and widely been considered... Read More about Additively manufactured ultra-high vacuum chamber for portable quantum technologies.

3D printed polymeric drug-eluting implants (2021)
Journal Article
Liaskoni, A., Wildman, R. D., & Roberts, C. J. (2021). 3D printed polymeric drug-eluting implants. International Journal of Pharmaceutics, 597, Article 120330. https://doi.org/10.1016/j.ijpharm.2021.120330

An extrusion-based 3D printer has been used for the manufacturing of sustained drug release poly(ε-caprolactone) (PCL) implants. Such implants can address issues of reduced patient compliance due to the necessary frequent administration of convention... Read More about 3D printed polymeric drug-eluting implants.

Author Correction: Design of highly stabilized nanocomposite inks based on biodegradable polymer-matrix and gold nanoparticles for Inkjet Printing (2020)
Journal Article
Begines, B., Alcudia, A., Aguilera-Velazquez, R., Martinez, G., He, Y., Trindade, G. F., …Prado-Gotor, R. (2020). Author Correction: Design of highly stabilized nanocomposite inks based on biodegradable polymer-matrix and gold nanoparticles for Inkjet Printing. Scientific Reports, 10, Article 19793. https://doi.org/10.1038/s41598-020-76435-1

Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices (2020)
Journal Article
Wang, F., Gosling, J. H., Rance, G. A., Trindade, G. F., Makarovsky, O., Cottam, N. D., …Turyanska, L. (2021). Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices. Advanced Functional Materials, 31(5), Article 2007478. https://doi.org/10.1002/adfm.202007478

© 2020 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH 2D materials have unique structural and electronic properties with potential for transformative device applications. However, such devices are usually bespoke structures ma... Read More about Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices.

Challenges and approaches in assessing the interplay between microorganisms and their physical micro-environments (2020)
Journal Article
Harvey, H. J., Wildman, R. D., Mooney, S. J., & Avery, S. V. (2020). Challenges and approaches in assessing the interplay between microorganisms and their physical micro-environments. Computational and Structural Biotechnology Journal, 18, 2860-2866. https://doi.org/10.1016/j.csbj.2020.09.030

© 2020 The Author(s) Spatial structure over scales ranging from nanometres to centimetres (and beyond) varies markedly in diverse habitats and the industry-relevant settings that support microbial activity. Developing an understanding of the interpla... Read More about Challenges and approaches in assessing the interplay between microorganisms and their physical micro-environments.

A Click Chemistry Strategy for the Synthesis of Efficient Photoinitiators for Two‐Photon Polymerization (2020)
Journal Article
Henning, I., Woodward, A. W., Rance, G. A., Paul, B. T., Wildman, R. D., Irvine, D. J., & Moore, J. C. (2020). A Click Chemistry Strategy for the Synthesis of Efficient Photoinitiators for Two‐Photon Polymerization. Advanced Functional Materials, 30(50), Article 2006108. https://doi.org/10.1002/adfm.202006108

It is reported that efficient photoinitiators, suitable for two‐photon polymerization, can be obtained using the copper catalyzed azide/alkyne cycloaddition reaction. This click chemistry strategy provides a modular approach to the assembly of photoi... Read More about A Click Chemistry Strategy for the Synthesis of Efficient Photoinitiators for Two‐Photon Polymerization.

Inkjet based 3D Printing of bespoke medical devices that resist bacterial biofilm formation (2020)
Preprint / Working Paper
He, Y., Begines, B., Luckett, J., Dubern, J., Hook, A., Prina, E., …Wildman, R. D. Inkjet based 3D Printing of bespoke medical devices that resist bacterial biofilm formation

We demonstrate the formulation of advanced functional 3D printing inks that prevent the formation of bacterial biofilms in vivo. Starting from polymer libraries, we show that a biofilm resistant object can be 3D printed with the potential for shape a... Read More about Inkjet based 3D Printing of bespoke medical devices that resist bacterial biofilm formation.

Achieving Microparticles with Cell-Instructive Surface Chemistry by Using Tunable Co-Polymer Surfactants (2020)
Journal Article
Dundas, A. A., Cuzzucoli Crucitti, V., Haas, S., Dubern, J., Latif, A., Romero, M., …Irvine, D. J. (2020). Achieving Microparticles with Cell-Instructive Surface Chemistry by Using Tunable Co-Polymer Surfactants. Advanced Functional Materials, 30(36), Article 2001821. https://doi.org/10.1002/adfm.202001821

© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim A flow-focusing microfluidic device is used to produce functionalized monodisperse polymer particles with surface chemistries designed to control bacterial biofilm formatio... Read More about Achieving Microparticles with Cell-Instructive Surface Chemistry by Using Tunable Co-Polymer Surfactants.

Soil aggregates by design: Manufactured aggregates with defined microbial composition for interrogating microbial activities in soil microhabitats (2020)
Journal Article
Harvey, H. J., Wildman, R. D., Mooney, S. J., & Avery, S. V. (2020). Soil aggregates by design: Manufactured aggregates with defined microbial composition for interrogating microbial activities in soil microhabitats. Soil Biology and Biochemistry, 148, Article 107870. https://doi.org/10.1016/j.soilbio.2020.107870

Differences in the structure of microbial communities are reported to exist between the inside and outside of soil aggregates, but the impacts of soil aggregation on microbial activity in soils, essential for soil health, have proven difficult to stu... Read More about Soil aggregates by design: Manufactured aggregates with defined microbial composition for interrogating microbial activities in soil microhabitats.

Discovery of (meth)acrylate polymers that resist colonization by fungi associated with pathogenesis and biodeterioration (2020)
Journal Article
Vallieres, C., Hook, A. L., He, Y., Crucitti, V. C., Figueredo, G., Davies, C. R., …Avery, S. V. (2020). Discovery of (meth)acrylate polymers that resist colonization by fungi associated with pathogenesis and biodeterioration. Science Advances, 6(23), Article eaba6574. https://doi.org/10.1126/sciadv.aba6574

© 2020 The Authors. Fungi have major, negative socioeconomic impacts, but control with bioactive agents is increasingly restricted, while resistance is growing. Here, we describe an alternative fungal control strategy via materials operating passivel... Read More about Discovery of (meth)acrylate polymers that resist colonization by fungi associated with pathogenesis and biodeterioration.

Bioinspired Precision Engineering of Three-Dimensional Epithelial Stem Cell Microniches (2020)
Journal Article
Prina, E., Amer, M. H., Sidney, L., Tromayer, M., Moore, J., Liska, R., …Rose, F. R. (2020). Bioinspired Precision Engineering of Three-Dimensional Epithelial Stem Cell Microniches. Advanced Biosystems, 4(6), Article 2000016. https://doi.org/10.1002/adbi.202000016

© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Maintenance of the epithelium relies on stem cells residing within specialized microenvironments, known as epithelial crypts. Two-photon polymerization (2PP) is a valuable... Read More about Bioinspired Precision Engineering of Three-Dimensional Epithelial Stem Cell Microniches.

A 3D printed drug delivery implant formed from a dynamic supramolecular polyurethane formulation (2020)
Journal Article
Salimi, S., Wu, Y., Barreiros, M. I. E., Natfji, A. A., Khaled, S., Wildman, R., …Hayes, W. (2020). A 3D printed drug delivery implant formed from a dynamic supramolecular polyurethane formulation. Polymer Chemistry, 11(20), 3453-3464. https://doi.org/10.1039/d0py00068j

© 2020 The Royal Society of Chemistry. Using a novel molecular design approach, we have prepared a thermo-responsive supramolecular polyurethane as a matrix material for use in drug eluting implants. The dynamic supramolecular polyurethane (SPU) is a... Read More about A 3D printed drug delivery implant formed from a dynamic supramolecular polyurethane formulation.

A Reactive Prodrug Ink Formulation Strategy for Inkjet 3D Printing of Controlled Release Dosage Forms and Implants (2020)
Journal Article
He, Y., Foralosso, R., Ferraz Trindade, G., Ilchev, A., Cantu, L. R., Clark, E., …Wildman, R. D. (2020). A Reactive Prodrug Ink Formulation Strategy for Inkjet 3D Printing of Controlled Release Dosage Forms and Implants. Advanced Therapeutics, 3(6), Article 1900187. https://doi.org/10.1002/adtp.201900187

We propose a strategy for creating tuneable 3D printed drug delivery devices. 3D printing offers the opportunity for improved compliance and patient treatment outcomes through personalisation, but bottlenecks include finding formulations that provide... Read More about A Reactive Prodrug Ink Formulation Strategy for Inkjet 3D Printing of Controlled Release Dosage Forms and Implants.

Making tablets for delivery of poorly soluble drugs using photoinitiated 3D inkjet printing (2019)
Journal Article
Clark, E. A., Alexander, M. R., Irvine, D. J., Roberts, C. J., Wallace, M. J., Yoo, J., & Wildman, R. D. (2020). Making tablets for delivery of poorly soluble drugs using photoinitiated 3D inkjet printing. International Journal of Pharmaceutics, 578, Article 118805. https://doi.org/10.1016/j.ijpharm.2019.118805

© 2019 In this study, we investigate the viability of three-dimensional (3D) inkjet printing with UV curing to produce solid dosage forms containing a known poorly soluble drug, carvedilol. The formulation consists of 10 wt% carvedilol, Irgacure 2959... Read More about Making tablets for delivery of poorly soluble drugs using photoinitiated 3D inkjet printing.

Design of highly stabilized nanocomposite inks based on biodegradable polymer-matrix and gold nanoparticles for Inkjet Printing (2019)
Journal Article
Begines, B., Alcudia, A., Aguilera-Velazquez, R., Martinez, G., He, Y., Wildman, R., …Prado-Gotor, R. (2019). Design of highly stabilized nanocomposite inks based on biodegradable polymer-matrix and gold nanoparticles for Inkjet Printing. Scientific Reports, 9, Article 16097. https://doi.org/10.1038/s41598-019-52314-2

Nowadays there is a worldwide growing interest in the Inkjet Printing technology owing to its potentially high levels of geometrical complexity, personalization and resolution. There is also social concern about usage, disposal and accumulation of pl... Read More about Design of highly stabilized nanocomposite inks based on biodegradable polymer-matrix and gold nanoparticles for Inkjet Printing.

Towards digital metal additive manufacturing via high-temperature drop-on-demand jetting (2019)
Journal Article
Simonelli, M., Aboulkhair, N., Rasa, M., East, M., Tuck, C., Wildman, R., …Hague, R. (2019). Towards digital metal additive manufacturing via high-temperature drop-on-demand jetting. Additive Manufacturing, 30, Article 100930. https://doi.org/10.1016/j.addma.2019.100930

Drop-on-demand jetting of metals offers a fully digital manufacturing approach to surpass the limitations of the current generation powder-based additive manufacturing technologies. However, research on this topic has been restricted mainly to near-n... Read More about Towards digital metal additive manufacturing via high-temperature drop-on-demand jetting.