Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Enabling High-fidelity Personalized Pharmaceutical Tablets through Multimaterial Inkjet 3D Printing with a Water-soluble Excipient (2024)
Journal Article
Rivers, G., Lion, A., Rofiqoh Eviana Putri, N., Rance, G., Moloney, C., Taresco, V., …He, Y. (in press). Enabling High-fidelity Personalized Pharmaceutical Tablets through Multimaterial Inkjet 3D Printing with a Water-soluble Excipient. Materials Today Advances,

Additive manufacturing offers manufacture of personalised pharmaceutical tablets through design freedoms and material deposition control at an individual voxel level. This control goes beyond geometry and materials choices: inkjet based 3D printing e... Read More about Enabling High-fidelity Personalized Pharmaceutical Tablets through Multimaterial Inkjet 3D Printing with a Water-soluble Excipient.

Drop-on-demand metal jetting of pure copper: On the interaction of molten metal with ceramic and metallic substrates (2024)
Journal Article
Gilani, N., Aboulkhair, N. T., Simonelli, M., East, M., & Hague, R. J. (2024). Drop-on-demand metal jetting of pure copper: On the interaction of molten metal with ceramic and metallic substrates. Materials and Design, 240, Article 112834. https://doi.org/10.1016/j.matdes.2024.112834

Copper, renowned for its exceptional electrical and thermal conductivity at a low cost, holds great promise in electronic applications. While additive manufacturing of copper has attracted interest, the exploration of applying Drop-on-demand Metal Je... Read More about Drop-on-demand metal jetting of pure copper: On the interaction of molten metal with ceramic and metallic substrates.

Quantum nature of charge transport in inkjet-printed graphene revealed in high magnetic fields up to 60T (2024)
Journal Article
Cottam, N. D., Wang, F., Austin, J. S., Tuck, C. J., Hague, R., Fromhold, M., …Turyanska, L. (2024). Quantum nature of charge transport in inkjet-printed graphene revealed in high magnetic fields up to 60T. Small, Article 2311416. https://doi.org/10.1002/smll.202311416

Inkjet‐printing of graphene, iGr, provides an alternative route for the fabrication of highly conductive and flexible graphene films for use in devices. However, the contribution of quantum phenomena associated with 2D single layer graphene, SLG, to... Read More about Quantum nature of charge transport in inkjet-printed graphene revealed in high magnetic fields up to 60T.