Skip to main content

Research Repository

Advanced Search

All Outputs (8)

Off the Grid: a new strategy for material-jet 3D printing with enhanced sub-droplet resolution (2023)
Journal Article
Nelson-Dummett, O., Rivers, G., Gilani, N., Simonelli, M., Tuck, C. J., Wildman, R. D., …Turyanska, L. (2024). Off the Grid: a new strategy for material-jet 3D printing with enhanced sub-droplet resolution. Additive Manufacturing Letters, 8, Article 100185. https://doi.org/10.1016/j.addlet.2023.100185

Drop-on-Demand additive manufacturing could offer a facile solution for scalable on-site manufacturing. With an increasing number of functional materials available for this technology, there are growing opportunities for applications, such as electro... Read More about Off the Grid: a new strategy for material-jet 3D printing with enhanced sub-droplet resolution.

On the development of twinning-induced plasticity in additively manufactured 316L stainless steel (2023)
Journal Article
Crociata, D. D., Maskery, I., Hague, R., & Simonelli, M. (2023). On the development of twinning-induced plasticity in additively manufactured 316L stainless steel. Additive Manufacturing Letters, 7, Article 100176. https://doi.org/10.1016/j.addlet.2023.100176

A report on twinning-induced plasticity in 316L stainless steel manufactured by metal additive manufacturing (AM) is presented. A tapered tensile test geometry was used which enabled the investigation of twin formation over a range of strain levels i... Read More about On the development of twinning-induced plasticity in additively manufactured 316L stainless steel.

Formulation of functional materials for inkjet printing: A pathway towards fully 3D printed electronics (2023)
Journal Article
Bastola, A., He, Y., Im, J., Rivers, G., Wang, F., Worsley, R., …Turyanska, L. (2023). Formulation of functional materials for inkjet printing: A pathway towards fully 3D printed electronics. Materials Today Electronics, 6, Article 100058. https://doi.org/10.1016/j.mtelec.2023.100058

Inkjet printing offers a facile route for manufacturing the next generation of electronic devices, by combining the design freedom of additive manufacturing technologies with tuneable properties of functional materials and opportunities for their int... Read More about Formulation of functional materials for inkjet printing: A pathway towards fully 3D printed electronics.

Amorphous-crystalline nanostructured Nd-Fe-B permanent magnets using laser powder bed fusion: Metallurgy and magnetic properties (2023)
Journal Article
Wu, J., Aboulkhair, N. T., Robertson, S., Zhou, Z., Bagot, P. A., Moody, M. P., …Hague, R. J. (2023). Amorphous-crystalline nanostructured Nd-Fe-B permanent magnets using laser powder bed fusion: Metallurgy and magnetic properties. Acta Materialia, 259, 119239. https://doi.org/10.1016/j.actamat.2023.119239

Laser powder-bed fusion (PBF-LB), a class of additive manufacturing (AM), has attracted wide interest in the production of Nd-Fe-B permanent magnets, benefiting from the minimisation of waste of rare-earth elements and the post-processing requirement... Read More about Amorphous-crystalline nanostructured Nd-Fe-B permanent magnets using laser powder bed fusion: Metallurgy and magnetic properties.

Stable large area drop-on-demand deposition of a conductive polymer ink for 3D-printed electronics, enabled by bio-renewable co-solvents (2023)
Journal Article
Rivers, G., Austin, J. S., He, Y., Thompson, A., Gilani, N., Roberts, N., …Turyanska, L. (2023). Stable large area drop-on-demand deposition of a conductive polymer ink for 3D-printed electronics, enabled by bio-renewable co-solvents. Additive Manufacturing, 66, Article 103452. https://doi.org/10.1016/j.addma.2023.103452

Development of conductive polymer ink formulations with reliable jetting stability and physical properties could offer sustainable routes for scaling-up the 3D-printing of electronics. We report a new poly(3,4-ethylenedioxythiophene) polystyrene sulp... Read More about Stable large area drop-on-demand deposition of a conductive polymer ink for 3D-printed electronics, enabled by bio-renewable co-solvents.

Additive manufacturing processes for metals (2023)
Book Chapter
Aboulkhair, N. T., Bosio, F., Gilani, N., Phutela, C., Hague, R. J., & Tuck, C. J. (2023). Additive manufacturing processes for metals. In Quality Analysis of Additively Manufactured Metals: Simulation Approaches, Processes, and Microstructure Properties (201-258). Elsevier. https://doi.org/10.1016/b978-0-323-88664-2.00016-6

Additive manufacturing (AM) processes are a family of net-shaped manufacturing systems that are widely being used and adopted for their distinctive characteristics. Recently, AM processes have positioned themselves to be worthy of playing a role in r... Read More about Additive manufacturing processes for metals.

Innate immune cell instruction using micron-scale 3D objects of varied architecture and polymer chemistry: The ChemoArchiChip (2023)
Journal Article
Vassey, M., Ma, L., Kämmerling, L., Mbadugha, C., Trindade, G. F., Figueredo, G. P., …Alexander, M. R. (2023). Innate immune cell instruction using micron-scale 3D objects of varied architecture and polymer chemistry: The ChemoArchiChip. Matter, 6(3), 887-906. https://doi.org/10.1016/j.matt.2023.01.002

To design effective immunomodulatory implants, innate immune cell interactions at the surface of biomaterials need to be controlled and understood. The architectural design freedom of two-photon polymerization is used to produce arrays of surface-mou... Read More about Innate immune cell instruction using micron-scale 3D objects of varied architecture and polymer chemistry: The ChemoArchiChip.

Strategies for Integrating Metal Nanoparticles with Two-Photon Polymerization Process: Toward High Resolution Functional Additive Manufacturing (2023)
Journal Article
Im, J., Liu, Y., Hu, Q., Trindade, G. F., Parmenter, C., Fay, M., …Turyanska, L. (2023). Strategies for Integrating Metal Nanoparticles with Two-Photon Polymerization Process: Toward High Resolution Functional Additive Manufacturing. Advanced Functional Materials, 33(39), Article 2211920. https://doi.org/10.1002/adfm.202211920

This study reports the successful fabrication of complex 3D metal nanoparticle–polymer nanocomposites using two-photon polymerization (2PP). Three complementary strategies are detailed: in situ formation of metal nanoparticles (MeNPs) through a singl... Read More about Strategies for Integrating Metal Nanoparticles with Two-Photon Polymerization Process: Toward High Resolution Functional Additive Manufacturing.