Skip to main content

Research Repository

Advanced Search

All Outputs (59)

Parametric Assessment of the Effect of Cochlear Implant Positioning on Brain MRI Artefacts at 3 T (2021)
Journal Article
Dewey, R. S., Dineen, R. A., Clemence, M., Dick, O., Bowtell, R., & Kitterick, P. T. (2021). Parametric Assessment of the Effect of Cochlear Implant Positioning on Brain MRI Artefacts at 3 T. Otology and Neurotology, 42(10), e1449-e1456. https://doi.org/10.1097/MAO.0000000000003281

Background:Brain magnetic resonance imaging in patients with cochlear implants (CIs) is impacted by image artefacts.Hypothesis:The optimal positioning of the CI to minimize artefacts is unknown. This study aimed to characterize the dependence of the... Read More about Parametric Assessment of the Effect of Cochlear Implant Positioning on Brain MRI Artefacts at 3 T.

Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system (2021)
Journal Article
Brookes, M. J., Boto, E., Rea, M., Shah, V., Osborne, J., Holmes, N., …Bowtell, R. (2021). Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system. NeuroImage, 236, Article 118025. https://doi.org/10.1016/j.neuroimage.2021.118025

The optically pumped magnetometer (OPM) is a viable means to detect magnetic fields generated by human brain activity. Compared to conventional detectors (superconducting quantum interference devices) OPMs are small, lightweight, flexible, and operat... Read More about Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system.

Calibration-free regional RF shims for MRS (2021)
Journal Article
Berrington, A., Považan, M., Mirfin, C., Bawden, S., Park, Y. W., Marsh, D. C., …Gowland, P. A. (2021). Calibration-free regional RF shims for MRS. Magnetic Resonance in Medicine, 86(2), 611-624. https://doi.org/10.1002/mrm.28749

Purpose: Achieving a desired RF transmit field (B1+) in small regions-of-interest (ROIs) is critical for single-voxel MR spectroscopy at ultra-high field. RF shimming, using parallel transmission, requires B1+ mapping and optimisation, which limits i... Read More about Calibration-free regional RF shims for MRS.

Operculo-Insular and Anterior Cingulate Plasticity Induced by Transcranial Magnetic Stimulation in the Human Motor Cortex: A Dynamic Casual Modelling Study (2021)
Journal Article
Hodkinson, D. J., Bungert, A., Bowtell, R. W., Jackson, S. R., & Jung, J. (2021). Operculo-Insular and Anterior Cingulate Plasticity Induced by Transcranial Magnetic Stimulation in the Human Motor Cortex: A Dynamic Casual Modelling Study. Journal of Neurophysiology, 125(4), 1180-1190. https://doi.org/10.1152/jn.00670.2020

The ability to induce neuroplasticity with non-invasive brain stimulation techniques offers a unique opportunity to examine the human brain systems involved in pain modulation. In experimental and clinical settings, the primary motor cortex (M1) is c... Read More about Operculo-Insular and Anterior Cingulate Plasticity Induced by Transcranial Magnetic Stimulation in the Human Motor Cortex: A Dynamic Casual Modelling Study.

Probing the myelin water compartment with a saturation-recovery, multi-echo gradient-recalled echo sequence (2021)
Journal Article
Kleban, E., Gowland, P., & Bowtell, R. (2021). Probing the myelin water compartment with a saturation-recovery, multi-echo gradient-recalled echo sequence. Magnetic Resonance in Medicine, 86(1), 167-181. https://doi.org/10.1002/mrm.28695

Purpose: To investigate the effect of varying levels of (Formula presented.) -weighting on the evolution of the complex signal from white matter in a multi-echo gradient-recalled echo (mGRE) saturation-recovery sequence. Theory and Methods: Analysis... Read More about Probing the myelin water compartment with a saturation-recovery, multi-echo gradient-recalled echo sequence.

Mouth magnetoencephalography: A unique perspective on the human hippocampus (2020)
Journal Article
Tierney, T. M., Levy, A., Barry, D. N., Meyer, S. S., Shigihara, Y., Everatt, M., …Barnes, G. R. (2021). Mouth magnetoencephalography: A unique perspective on the human hippocampus. NeuroImage, 225, Article 117443. https://doi.org/10.1016/j.neuroimage.2020.117443

Traditional magnetoencephalographic (MEG) brain imaging scanners consist of a rigid sensor array surrounding the head; this means that they are maximally sensitive to superficial brain structures. New technology based on optical pumping means that we... Read More about Mouth magnetoencephalography: A unique perspective on the human hippocampus.

Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system (2020)
Journal Article
Hill, R. M., Boto, E., Rea, M., Holmes, N., Leggett, J., Coles, L. A., …Brookes, M. J. (2020). Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system. NeuroImage, 219, Article 116995. https://doi.org/10.1016/j.neuroimage.2020.116995

© 2020 The Authors Magnetoencephalography (MEG) is a powerful technique for functional neuroimaging, offering a non-invasive window on brain electrophysiology. MEG systems have traditionally been based on cryogenic sensors which detect the small extr... Read More about Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system.

Modulating Brain Networks With Transcranial Magnetic Stimulation Over the Primary Motor Cortex: A Concurrent TMS/fMRI Study (2020)
Journal Article
Jung, J., Bungert, A., Bowtell, R., & Jackson, S. (2020). Modulating Brain Networks With Transcranial Magnetic Stimulation Over the Primary Motor Cortex: A Concurrent TMS/fMRI Study. Frontiers in Human Neuroscience, 14, Article 31. https://doi.org/10.3389/fnhum.2020.00031

Stimulating the primary motor cortex (M1) using transcranial magnetic stimulation (TMS) causes unique multisensory experience such as the targeted muscle activity, afferent/reafferent sensory feedback, tactile sensation over the scalp and “click” sou... Read More about Modulating Brain Networks With Transcranial Magnetic Stimulation Over the Primary Motor Cortex: A Concurrent TMS/fMRI Study.

A tool for functional brain imaging with lifespan compliance (2019)
Journal Article
Hill, R. M., Boto, E., Holmes, N., Hartley, C., Seedat, Z. A., Leggett, J., …Brookes, M. J. (2019). A tool for functional brain imaging with lifespan compliance. Nature Communications, 10, Article 4785. https://doi.org/10.1038/s41467-019-12486-x

The human brain undergoes significant functional and structural changes in the first decades of life, as the foundations for human cognition are laid down. However, non-invasive imaging techniques to investigate brain function throughout neurodevelop... Read More about A tool for functional brain imaging with lifespan compliance.

Balanced, bi-planar magnetic field and field gradient coils for field compensation in wearable magnetoencephalography (2019)
Journal Article
Holmes, N., Tierney, T. M., Leggett, J., Boto, E., Mellor, S., Roberts, G., …Bowtell, R. (2019). Balanced, bi-planar magnetic field and field gradient coils for field compensation in wearable magnetoencephalography. Scientific Reports, 9, Article 14196. https://doi.org/10.1038/s41598-019-50697-w

To allow wearable magnetoencephalography (MEG) recordings to be made on unconstrained subjects the spatially inhomogeneous remnant magnetic field inside the magnetically shielded room (MSR) must be nulled. Previously, a large bi-planar coil system wh... Read More about Balanced, bi-planar magnetic field and field gradient coils for field compensation in wearable magnetoencephalography.

Data‐driven model optimization for optically pumped magnetometer sensor arrays (2019)
Journal Article
Duque‐Muñoz, L., Tierney, T. M., Meyer, S. S., Boto, E., Holmes, N., Roberts, G., …Barnes, G. R. (2019). Data‐driven model optimization for optically pumped magnetometer sensor arrays. Human Brain Mapping, 40(15), 4357-4369. https://doi.org/10.1002/hbm.24707

© 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. Optically pumped magnetometers (OPMs) have reached sensitivity levels that make them viable portable alternatives to traditional superconducting technology for magnetoenceph... Read More about Data‐driven model optimization for optically pumped magnetometer sensor arrays.

Towards OPM-MEG in a virtual reality environment (2019)
Journal Article
Roberts, G., Holmes, N., Alexander, N., Boto, E., Leggett, J., Hill, R. M., …Brookes, M. J. (2019). Towards OPM-MEG in a virtual reality environment. NeuroImage, 199, 408-417. https://doi.org/10.1016/j.neuroimage.2019.06.010

Virtual reality (VR) provides an immersive environment in which a participant can experience a feeling of presence in a virtual world. Such environments generate strong emotional and physical responses and have been used for wide-ranging applications... Read More about Towards OPM-MEG in a virtual reality environment.

Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography (2019)
Journal Article
Tierney, T. M., Holmes, N., Mellor, S., López, J. D., Roberts, G., Hill, R. M., …Barnes, G. R. (2019). Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography. NeuroImage, 199, 598-608. https://doi.org/10.1016/j.neuroimage.2019.05.063

Optically Pumped Magnetometers (OPMs) have emerged as a viable and wearable alternative to cryogenic, superconducting MEG systems. This new generation of sensors has the advantage of not requiring cryogenic cooling and as a result can be flexibly pla... Read More about Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography.

Updating dynamic noise models with moving magnetoencephalographic (MEG) systems (2019)
Journal Article
Lopez, J. D., Tierney, T. M., Sucerquia, A., Valencia, F., Holmes, N., Mellor, S., …Barnes, G. R. (2019). Updating dynamic noise models with moving magnetoencephalographic (MEG) systems. IEEE Access, 7(1), 10093-10102. https://doi.org/10.1109/access.2019.2891162

Optically pumped magnetometers have opened many possibilities for the study of human brain function using wearable moveable technology. In order to fully exploit this capability, a stable low-field environment at the sensors is required. One way to a... Read More about Updating dynamic noise models with moving magnetoencephalographic (MEG) systems.

Frequency difference mapping applied to the corpus callosum at 7T (2018)
Journal Article
Tendler, B. C., & Bowtell, R. (2019). Frequency difference mapping applied to the corpus callosum at 7T. Magnetic Resonance in Medicine, 81(5), 3017-3031. https://doi.org/10.1002/mrm.27626

Purpose: Frequency difference mapping (FDM) is a phase processing technique which characterises the non-linear temporal evolution of the phase of gradient echo signals. Here, a novel FDM processing algorithm is introduced, which is shown to reveal in... Read More about Frequency difference mapping applied to the corpus callosum at 7T.

Cognitive neuroscience using wearable magnetometer arrays: Non-invasive assessment of language function (2018)
Journal Article
Tierney, T. M., Holmes, N., Meyer, S. S., Boto, E., Roberts, G., Leggett, J., …Barnes, G. R. (2018). Cognitive neuroscience using wearable magnetometer arrays: Non-invasive assessment of language function. NeuroImage, 181, 513-520. https://doi.org/10.1016/j.neuroimage.2018.07.035

Recent work has demonstrated that Optically Pumped Magnetometers (OPMs) can be utilised to create a wearable Magnetoencephalography (MEG) system that is motion robust. In this study, we use this system to map eloquent cortex using a clinically valida... Read More about Cognitive neuroscience using wearable magnetometer arrays: Non-invasive assessment of language function.