Skip to main content

Research Repository

Advanced Search

All Outputs (9)

Frequency difference mapping applied to the corpus callosum at 7T (2018)
Journal Article
Tendler, B. C., & Bowtell, R. (2019). Frequency difference mapping applied to the corpus callosum at 7T. Magnetic Resonance in Medicine, 81(5), 3017-3031. https://doi.org/10.1002/mrm.27626

Purpose: Frequency difference mapping (FDM) is a phase processing technique which characterises the non-linear temporal evolution of the phase of gradient echo signals. Here, a novel FDM processing algorithm is introduced, which is shown to reveal in... Read More about Frequency difference mapping applied to the corpus callosum at 7T.

Is human auditory cortex organization compatible with the monkey model? Contrary evidence from ultra-high-field functional and structural MRI (2018)
Journal Article
Besle, J., Mougin, O., Sánchez-Panchuelo, R.-M., Lanting, C., Gowland, P., Bowtell, R., …Krumbholz, K. (2018). Is human auditory cortex organization compatible with the monkey model? Contrary evidence from ultra-high-field functional and structural MRI. Cerebral Cortex, 29(1), 410-428. https://doi.org/10.1093/cercor/bhy267

It is commonly assumed that the human auditory cortex is organized similarly to that of macaque monkeys, where the primary region, or “core,” is elongated parallel to the tonotopic axis (main direction of tonotopic gradients), and subdivided across t... Read More about Is human auditory cortex organization compatible with the monkey model? Contrary evidence from ultra-high-field functional and structural MRI.

Exploring the relative efficacy of motion artefact correction techniques for EEG data acquired during simultaneous fMRI (2018)
Journal Article
Alexander, D. J., Smith, J. A., Spencer, G. S., Jorge, J., Bowtell, R., & Mullinger, K. J. (2019). Exploring the relative efficacy of motion artefact correction techniques for EEG data acquired during simultaneous fMRI. Human Brain Mapping, 40(2), 578-596. https://doi.org/10.1002/hbm.24396

Simultaneous EEG-fMRI allows multi-parametric characterisation of brain function, in principle enabling a more complete understanding of brain responses; unfortunately the hostile MRI environment severely reduces EEG data quality. Simply eliminating... Read More about Exploring the relative efficacy of motion artefact correction techniques for EEG data acquired during simultaneous fMRI.

Cognitive neuroscience using wearable magnetometer arrays: Non-invasive assessment of language function (2018)
Journal Article
Tierney, T. M., Holmes, N., Meyer, S. S., Boto, E., Roberts, G., Leggett, J., …Barnes, G. R. (2018). Cognitive neuroscience using wearable magnetometer arrays: Non-invasive assessment of language function. NeuroImage, 181, 513-520. https://doi.org/10.1016/j.neuroimage.2018.07.035

Recent work has demonstrated that Optically Pumped Magnetometers (OPMs) can be utilised to create a wearable Magnetoencephalography (MEG) system that is motion robust. In this study, we use this system to map eloquent cortex using a clinically valida... Read More about Cognitive neuroscience using wearable magnetometer arrays: Non-invasive assessment of language function.

A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography (2018)
Journal Article
Holmes, N., Leggett, J., Boto, E., Roberts, G., Hill, R. M., Tierney, T. M., …Bowtell, R. (2018). A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography. NeuroImage, 181, 760-774. https://doi.org/10.1016/j.neuroimage.2018.07.028

Small, commercially-available Optically Pumped Magnetometers (OPMs) can be used to construct a wearable Magnetoencephalography (MEG) system that allows large head movements to be made during recording. The small dynamic range of these sensors however... Read More about A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography.

Microstructural imaging of the human brain with a ‘super-scanner’: 10 key advantages of ultra-strong gradients for diffusion MRI (2018)
Journal Article
Jones, D., Alexander, D., Bowtell, R. W., Cercignani, M., Dell'Acqua, F., McHugh, D., Miller, K., Palombo, M., Parker, G., Rudrapatna, U., & Tax, C. (2018). Microstructural imaging of the human brain with a ‘super-scanner’: 10 key advantages of ultra-strong gradients for diffusion MRI. NeuroImage, 182, 8-38. https://doi.org/10.1016/j.neuroimage.2018.05.047

The key component of a microstructural diffusion MRI ‘super-scanner’ is a dedicated high-strength gradient system that enables stronger diffusion weightings per unit time compared to conventional gradient designs. This can, in turn, drastically short... Read More about Microstructural imaging of the human brain with a ‘super-scanner’: 10 key advantages of ultra-strong gradients for diffusion MRI.

Quantifying MRI frequency shifts due to structures with anisotropic magnetic susceptibility using pyrolytic graphite sheet (2018)
Journal Article
Cronin, M., & Bowtell, R. W. (2018). Quantifying MRI frequency shifts due to structures with anisotropic magnetic susceptibility using pyrolytic graphite sheet. Scientific Reports, 8, Article 6259. https://doi.org/10.1038/s41598-018-24650-2

Magnetic susceptibility is an important source of contrast in magnetic resonance imaging (MRI), with spatial variations in the susceptibility of tissue affecting both the magnitude and phase of the measured signals. This contrast has generally been i... Read More about Quantifying MRI frequency shifts due to structures with anisotropic magnetic susceptibility using pyrolytic graphite sheet.

Moving magnetoencephalography towards real-world applications with a wearable system (2018)
Journal Article
Boto, E., Holmes, N., Leggett, J., Roberts, G., Shah, V., Meyer, S. S., …Brookes, M. J. (2018). Moving magnetoencephalography towards real-world applications with a wearable system. Nature, 555, 657-661. https://doi.org/10.1038/nature26147

Imaging human brain function with techniques such as magnetoencephalography1 (MEG) typically requires a subject to perform tasks whilst their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessibl... Read More about Moving magnetoencephalography towards real-world applications with a wearable system.

Exploring the origins of EEG motion artefacts during simultaneous fMRI acquisition: implications for motion artefact correction (2018)
Journal Article
Spencer, G. S., Smith, J. A., Chowdhury, M. E., Bowtell, R. W., & Mullinger, K. J. (in press). Exploring the origins of EEG motion artefacts during simultaneous fMRI acquisition: implications for motion artefact correction. NeuroImage, 173, https://doi.org/10.1016/j.neuroimage.2018.02.034

Motion artefacts (MAs) are induced within EEG data collected simultaneously with fMRI when the subject’s head rotates relative to the magnetic field. The effects of these artefacts have generally been ameliorated by removing periods of data during wh... Read More about Exploring the origins of EEG motion artefacts during simultaneous fMRI acquisition: implications for motion artefact correction.