Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Classification of cancer cells at the sub-cellular level by phonon microscopy using deep learning (2023)
Journal Article
Pérez-Cota, F., Martínez-Arellano, G., La Cavera III, S., Hardiman, W., Thornton, L., Fuentes-Domínguez, R., …Clark, M. (2023). Classification of cancer cells at the sub-cellular level by phonon microscopy using deep learning. Scientific Reports, 13, Article 16228. https://doi.org/10.1038/s41598-023-42793-9

There is a consensus about the strong correlation between the elasticity of cells and tissue and their normal, dysplastic, and cancerous states. However, developments in cell mechanics have not seen significant progress in clinical applications. In t... Read More about Classification of cancer cells at the sub-cellular level by phonon microscopy using deep learning.

Parallel imaging with phonon microscopy using a multi-core fibre bundle detection (2023)
Journal Article
Fuentes-Domínguez, R., Yao, M., Hardiman, W., La Cavera III, S., Setchfield, K., Pérez-Cota, F., …Clark, M. (2023). Parallel imaging with phonon microscopy using a multi-core fibre bundle detection. Photoacoustics, 31, Article 100493. https://doi.org/10.1016/j.pacs.2023.100493

In this paper, we show a proof-of-concept method to parallelise phonon microscopy measurements for cell elasticity imaging by demonstrating a 3-fold increase in acquisition speed which is limited by current acquisition hardware. Phonon microscopy is... Read More about Parallel imaging with phonon microscopy using a multi-core fibre bundle detection.

Diffractive metasurface light-shaping from fiber endoscope probes for increased depth of field (2023)
Journal Article
He, F., Gordon, G., Fuentes-Dominguez, R., Cousins, R., Mellor, C. J., Barton, J. . K., & Gordon, G. S. . D. (2023). Diffractive metasurface light-shaping from fiber endoscope probes for increased depth of field. Proceedings of SPIE, 12356, Article 1235606. https://doi.org/10.1117/12.2648860

In applications such as optical coherence tomography, there is a need both to achieve large depth of field by light shaping and to maintain ultracompact form factors. Flat metasurfaces on optical fibers can achieve such requirements, with designs suc... Read More about Diffractive metasurface light-shaping from fiber endoscope probes for increased depth of field.