Skip to main content

Research Repository

Advanced Search

All Outputs (6)

Modelling the Effect of Intracellular Calcium in the Rundown of L-Type Calcium Current (2022)
Conference Proceeding
Agrawal, A., Clerx, M., Wang, K., Polonchuk, L., Gavaghan, D. J., & Mirams, G. R. (2022). Modelling the Effect of Intracellular Calcium in the Rundown of L-Type Calcium Current. In 2022 Computing in Cardiology (CinC). https://doi.org/10.22489/CinC.2022.051

The L-type calcium current (ICaL) is a key current of the heart playing an important role in the contraction of the cardiomyocyte. Patch-clamp recordings of ionic currents can be associated with a reduction of the current magnitude with time (termed... Read More about Modelling the Effect of Intracellular Calcium in the Rundown of L-Type Calcium Current.

Normalisation of Action Potential Data Recorded with Sharp Electrodes Maximises Its Utility for Model Development (2022)
Conference Proceeding
Barral, Y. S. H., Polonchuk, L., R. Mirams, G., Clerx, M., Page, G., Sweat, K., …Gavaghan, D. J. (2022). Normalisation of Action Potential Data Recorded with Sharp Electrodes Maximises Its Utility for Model Development. In Computing in Cardiology 2022. https://doi.org/10.22489/cinc.2022.356

In silico models of cardiomyocyte electrophysiology describe the various ionic currents and fluxes that lead to the formation of action potentials (APs). Experimental data used to create such models can be recorded in adult human cardiac trabeculae u... Read More about Normalisation of Action Potential Data Recorded with Sharp Electrodes Maximises Its Utility for Model Development.

Models of the cardiac L-type calcium current: A quantitative review (2022)
Journal Article
Agrawal, A., Wang, K., Polonchuk, L., Cooper, J., Hendrix, M., Gavaghan, D. J., …Clerx, M. (2022). Models of the cardiac L-type calcium current: A quantitative review. Wiley Interdisciplinary Reviews: Mechanisms of Disease, 15(1), Article e1581. https://doi.org/10.1002/wsbm.1581

The L-type calcium current ((Formula presented.)) plays a critical role in cardiac electrophysiology, and models of (Formula presented.) are vital tools to predict arrhythmogenicity of drugs and mutations. Five decades of measuring and modeling (Form... Read More about Models of the cardiac L-type calcium current: A quantitative review.

cellmlmanip and chaste_codegen: automatic CellML to C++ code generation with fixes for singularities and automatically generated Jacobians (2022)
Journal Article
Hendrix, M., Clerx, M., Tamuri, A. U., Keating, S. M., Johnstone, R. H., Cooper, J., & Mirams, G. R. (2022). cellmlmanip and chaste_codegen: automatic CellML to C++ code generation with fixes for singularities and automatically generated Jacobians. Wellcome Open Research, 6, Article 261. https://doi.org/10.12688/wellcomeopenres.17206.2

Hundreds of different mathematical models have been proposed for describing electrophysiology of various cell types. These models are quite complex (nonlinear systems of typically tens of ODEs and sometimes hundreds of parameters) and software packag... Read More about cellmlmanip and chaste_codegen: automatic CellML to C++ code generation with fixes for singularities and automatically generated Jacobians.

A Parameter Representing Missing Charge Should Be Considered when Calibrating Action Potential Models (2022)
Journal Article
Barral, Y. H. M., Shuttleworth, J., Clerx, M., Whittaker, D. G., Wang, K., Polonchuk, L., …Mirams, G. R. (2022). A Parameter Representing Missing Charge Should Be Considered when Calibrating Action Potential Models. Frontiers in Physiology, 13, Article 879035. https://doi.org/10.3389/fphys.2022.879035

Computational models of the electrical potential across a cell membrane are longstanding and vital tools in electrophysiology research and applications. These models describe how ionic currents, internal fluxes, and buffering interact to determine me... Read More about A Parameter Representing Missing Charge Should Be Considered when Calibrating Action Potential Models.

chaste codegen: automatic CellML to C++ code generation with fixes for singularities and automatically generated Jacobians (2022)
Journal Article
Hendrix, M., Clerx, M., Tamuri, A. U., Keating, S. M., Johnstone, R. H., Cooper, J., & Mirams, G. R. (2022). chaste codegen: automatic CellML to C++ code generation with fixes for singularities and automatically generated Jacobians. Wellcome Open Research, 6, Article 261. https://doi.org/10.12688/wellcomeopenres.17206.1

Hundreds of different mathematical models have been proposed for describing electrophysiology of various cell types. These models are quite complex (nonlinear systems of typically tens of ODEs and sometimes hundreds of parameters) and software packag... Read More about chaste codegen: automatic CellML to C++ code generation with fixes for singularities and automatically generated Jacobians.