Skip to main content

Research Repository

Advanced Search

All Outputs (15)

Oxidative cleavage of polysaccharides by a termite-derived superoxide dismutase boosts the degradation of biomass by glycoside hydrolases (2022)
Journal Article

Wood-feeding termites effectively degrade plant biomass through enzymatic degradation. Despite their high efficiencies, however, individual glycoside hydrolases isolated from termites and their symbionts exhibit anomalously low effectiveness in ligno... Read More about Oxidative cleavage of polysaccharides by a termite-derived superoxide dismutase boosts the degradation of biomass by glycoside hydrolases.

Activity and substrate specificity of lytic polysaccharide monooxygenases: An ATR FTIR-based sensitive assay tested on a novel species from Pseudomonas putida (2021)
Journal Article

Pseudomonas putida W619 is a soil Gram-negative bacterium commonly used in environmental studies thanks to its ability in degrading many aromatic compounds. Its genome contains several putative carbohydrate-active enzymes such as glycoside hydrolases... Read More about Activity and substrate specificity of lytic polysaccharide monooxygenases: An ATR FTIR-based sensitive assay tested on a novel species from Pseudomonas putida.

Mechanistic basis of substrate–O2 coupling within a chitin-active lytic polysaccharide monooxygenase: An integrated NMR/EPR study (2020)
Journal Article

Lytic polysaccharide monooxygenases (LPMOs) have a unique ability to activate molecular oxygen for subsequent oxidative cleavage of glycosidic bonds. To provide insight into the mode of action of these industrially important enzymes, we have performe... Read More about Mechanistic basis of substrate–O2 coupling within a chitin-active lytic polysaccharide monooxygenase: An integrated NMR/EPR study.

Insights from semi-oriented EPR spectroscopy studies into the interaction of lytic polysaccharide monooxygenases with cellulose (2020)
Journal Article

Probing the detailed interaction between lytic polysaccharide monooxygenases (LPMOs) and their polysaccharide substrates is key to revealing further insights into the mechanism of action of this class of enzymes on recalcitrant biomass. This investig... Read More about Insights from semi-oriented EPR spectroscopy studies into the interaction of lytic polysaccharide monooxygenases with cellulose.

Discovery of a fungal copper radical oxidase with high catalytic efficiency towards 5-hydroxymethylfurfural and benzyl alcohols for bioprocessing (2020)
Journal Article

Copyright © 2020 American Chemical Society. Alternatives to petroleum-based chemicals are highly sought-after for ongoing efforts to reduce the damaging effects of human activity on the environment. Copper radical oxidases from Auxiliary Activity Fam... Read More about Discovery of a fungal copper radical oxidase with high catalytic efficiency towards 5-hydroxymethylfurfural and benzyl alcohols for bioprocessing.

Formation of a Copper(II)–Tyrosyl Complex at the Active Site of Lytic Polysaccharide Monooxygenases Following Oxidation by H2O2 (2019)
Journal Article

Hydrogen peroxide is a cosubstrate for the oxidative cleavage of saccharidic substrates by copper-containing lytic polysaccharide monooxygenases (LPMOs). The rate of reaction of LPMOs with hydrogen peroxide is high, but it is accompanied by rapid in... Read More about Formation of a Copper(II)–Tyrosyl Complex at the Active Site of Lytic Polysaccharide Monooxygenases Following Oxidation by H2O2.

An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion (2018)
Journal Article

Thermobia domestica belongs to an ancient group of insects and has a remarkable ability to digest crystalline cellulose without microbial assistance. By investigating the digestive proteome of Thermobia, we have identified over 20 members of an uncha... Read More about An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion.

Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates (2017)
Journal Article

Lytic polysaccharide monooxygenases (LPMOs) are industrially important copper-dependent enzymes that oxidatively cleave polysaccharides. Here we present a functional and structural characterization of two closely related AA9-family LPMOs from Lentinu... Read More about Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates.

Structure–function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family (2015)
Journal Article

Alcohol oxidases, including carbohydrate oxidases, have a long history of research that has generated fundamental biological understanding and biotechnological applications. Despite a long history of study, the galactose 6-oxidase/glyoxal oxidase fam... Read More about Structure–function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family.