Skip to main content

Research Repository

Advanced Search

All Outputs (39)

Effects of GLP-1 Infusion Upon Whole-body Glucose Uptake and Skeletal Muscle Perfusion During Fed-state in Older Men (2022)
Journal Article
Abdulla, H., Phillips, B., Wilkinson, D., Gates, A., Limb, M., Jandova, T., …Atherton, P. (2023). Effects of GLP-1 Infusion Upon Whole-body Glucose Uptake and Skeletal Muscle Perfusion During Fed-state in Older Men. Journal of Clinical Endocrinology and Metabolism, 108(4), 971-978. https://doi.org/10.1210/clinem/dgac613

Introduction Ageing skeletal muscles become both insulin resistant and atrophic. The hormone glucagon-like peptide 1 (GLP-1) facilitates postprandial glucose uptake as well as augmenting muscle perfusion, independent of insulin action. We thus hypot... Read More about Effects of GLP-1 Infusion Upon Whole-body Glucose Uptake and Skeletal Muscle Perfusion During Fed-state in Older Men.

Caloric restriction improves glycaemic control without reducing plasma branched-chain amino acids or keto-acids in obese men (2022)
Journal Article
Sayda, M. H., Abdul-Aziz, M. H., Gharahdaghi, N., Wilkinson, D. J., Greenhaff, P. L., Philips, B. E., …Atherton, P. J. (2022). Caloric restriction improves glycaemic control without reducing plasma branched-chain amino acids or keto-acids in obese men. Scientific Reports, 12, Article 19273. https://doi.org/10.1038/s41598-022-21814-z

Higher plasma leucine, isoleucine and valine (BCAA) concentrations are associated with diabetes, obesity and insulin resistance (IR). Here, we evaluated the effects of 6-weeks very-low calorie diet (VLCD) upon fasting BCAA in overweight (OW) non-diab... Read More about Caloric restriction improves glycaemic control without reducing plasma branched-chain amino acids or keto-acids in obese men.

Neuromuscular recruitment strategies of the vastus lateralis according to sex (2022)
Journal Article
Guo, Y., Jones, E. J., Inns, T. B., Ely, I. A., Stashuk, D. W., Wilkinson, D. J., …Piasecki, M. (2022). Neuromuscular recruitment strategies of the vastus lateralis according to sex. Acta Physiologica, 235(2), Article e13803. https://doi.org/10.1111/apha.13803

Aim: Despite males typically exhibiting greater muscle strength and fatigability than females, it remains unclear if there are sex-based differences in neuromuscular recruitment strategies e.g. recruitment and modulation of motor unit firing rate (MU... Read More about Neuromuscular recruitment strategies of the vastus lateralis according to sex.

Green Tea Extract Concurrent with an Oral Nutritional Supplement Acutely Enhances Muscle Microvascular Blood Flow without Altering Leg Glucose Uptake in Healthy Older Adults (2021)
Journal Article
Din, U. S. U., Sian, T. S., Deane, C. S., Smith, K., Gates, A., Lund, J. N., …Phillips, B. E. (2021). Green Tea Extract Concurrent with an Oral Nutritional Supplement Acutely Enhances Muscle Microvascular Blood Flow without Altering Leg Glucose Uptake in Healthy Older Adults. Nutrients, 13(11), Article 3895. https://doi.org/10.3390/nu13113895

Postprandial macro-and microvascular blood flow and metabolic dysfunction manifest with advancing age, so vascular transmuting interventions are desirable. In this randomised, singleblind, placebo-controlled, crossover trial, we investigated the impa... Read More about Green Tea Extract Concurrent with an Oral Nutritional Supplement Acutely Enhances Muscle Microvascular Blood Flow without Altering Leg Glucose Uptake in Healthy Older Adults.

Six weeks of high-intensity interval training enhances contractile activity induced vascular reactivity and skeletal muscle perfusion in older adults (2021)
Journal Article
Herrod, P. J., Atherton, P. J., Smith, K., Williams, J. P., Lund, J. N., & Phillips, B. E. (2021). Six weeks of high-intensity interval training enhances contractile activity induced vascular reactivity and skeletal muscle perfusion in older adults. GeroScience, 43(6), 2667-2678. https://doi.org/10.1007/s11357-021-00463-6

Impairments in muscle microvascular function are associated with the pathogenesis of sarcopenia and cardiovascular disease. High-intensity interval training (HIIT) is an intervention by which a myriad of beneficial skeletal muscle/cardiovascular adap... Read More about Six weeks of high-intensity interval training enhances contractile activity induced vascular reactivity and skeletal muscle perfusion in older adults.

Transcriptomic links to muscle mass loss and declines in cumulative muscle protein synthesis during short-term disuse in healthy younger humans (2021)
Journal Article
Willis, C. R., Gallagher, I. J., Wilkinson, D. J., Brook, M. S., Bass, J. J., Phillips, B. E., …Atherton, P. J. (2021). Transcriptomic links to muscle mass loss and declines in cumulative muscle protein synthesis during short-term disuse in healthy younger humans. FASEB Journal, 35(9), Article e21830. https://doi.org/10.1096/fj.202100276RR

Muscle disuse leads to a rapid decline in muscle mass, with reduced muscle protein synthesis (MPS) considered the primary physiological mechanism. Here, we employed a systems biology approach to uncover molecular networks and key molecular candidates... Read More about Transcriptomic links to muscle mass loss and declines in cumulative muscle protein synthesis during short-term disuse in healthy younger humans.

Exploring the impact of COVID-19 on the willingness of older adults to participate in physiology research: views from past and potential volunteers (2021)
Journal Article
Deane, C. S., Gates, A., Traviss-Turner, G. D., Wilkinson, D. J., Smith, K., Atherton, P. J., & Phillips, B. E. (2021). Exploring the impact of COVID-19 on the willingness of older adults to participate in physiology research: views from past and potential volunteers. Applied Physiology, Nutrition, and Metabolism, 46(9), 1147-1151. https://doi.org/10.1139/apnm-2021-0204

We explored the views of older (≥65 years) past and potential volunteers in regard to participating in physiology research during the COVID-19 pandemic. Using an online questionnaire and focus groups, we found that past volunteers (n=55) were more li... Read More about Exploring the impact of COVID-19 on the willingness of older adults to participate in physiology research: views from past and potential volunteers.

Myokine Responses to Exercise in a Rat Model of Low/High Adaptive Potential (2021)
Journal Article
Farrash, W. F., Phillips, B. E., Britton, S. L., Qi, N., Koch, L. G., Wilkinson, D. J., …Atherton, P. J. (2021). Myokine Responses to Exercise in a Rat Model of Low/High Adaptive Potential. Frontiers in Endocrinology, 12, 1-10. https://doi.org/10.3389/fendo.2021.645881

Introduction: Assuming myokines underlie some of the health benefits of exercise, we hypothesised that ‘high responder trainer’ (HRT) rats would exhibit distinct myokine profiles to ‘low responder trainers’ (LRT), reflecting distinct health and adapt... Read More about Myokine Responses to Exercise in a Rat Model of Low/High Adaptive Potential.

Atrophy Resistant vs. Atrophy Susceptible skeletal muscles: “aRaS” as a novel experimental paradigm to study the mechanisms of human disuse atrophy (2021)
Journal Article
Hardy, E., Inns, T., Wilkinson, D., Piasecki, M., Atherton, P., Phillips, B., …Smith, K. (2021). Atrophy Resistant vs. Atrophy Susceptible skeletal muscles: “aRaS” as a novel experimental paradigm to study the mechanisms of human disuse atrophy. Frontiers in Psychology, 12, Article 653060. https://doi.org/10.3389/fphys.2021.653060

Objective: Disuse atrophy (DA) describes inactivity-induced skeletal muscle loss, through incompletely defined mechanisms. An intriguing observation is that individual muscles exhibit differing degrees of atrophy, despite exhibiting similar anatomica... Read More about Atrophy Resistant vs. Atrophy Susceptible skeletal muscles: “aRaS” as a novel experimental paradigm to study the mechanisms of human disuse atrophy.

A novel dietary intervention reduces circulatory branched-chain amino acids by 50%: A pilot study of relevance for obesity and diabetes (2020)
Journal Article
Ramzan, I., Taylor, M., Phillips, B., Wilkinson, D., Smith, K., Hession, K., …Atherton, P. (2021). A novel dietary intervention reduces circulatory branched-chain amino acids by 50%: A pilot study of relevance for obesity and diabetes. Nutrients, 13(1), Article 95. https://doi.org/10.3390/nu13010095

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Elevated circulating branched-chain amino acids (BCAAs; isoleucine, leucine, and valine) are associated with obesity and type 2 diabetes (T2D). Reducing circulatory BCAAs by dietary restrictio... Read More about A novel dietary intervention reduces circulatory branched-chain amino acids by 50%: A pilot study of relevance for obesity and diabetes.

Phenylbutyrate, a branched-chain amino acid keto dehydrogenase activator, promotes branched-chain amino acid metabolism and induces muscle catabolism in C2C12 cells (2020)
Journal Article
Crossland, H., Smith, K., Idris, I., Phillips, B. E., Atherton, P. J., & Wilkinson, D. J. (2021). Phenylbutyrate, a branched-chain amino acid keto dehydrogenase activator, promotes branched-chain amino acid metabolism and induces muscle catabolism in C2C12 cells. Experimental Physiology, 106(3), 585-592. https://doi.org/10.1113/EP089223

New Findings: What is the central question of this study? The compound sodium phenylbutyrate (PB) has been shown to promote branched-chain amino acid (BCAA) catabolism, and as such has been proposed as a treatment for disorders with enhanced BCAA lev... Read More about Phenylbutyrate, a branched-chain amino acid keto dehydrogenase activator, promotes branched-chain amino acid metabolism and induces muscle catabolism in C2C12 cells.

The mechanisms of skeletal muscle atrophy in response to transient knockdown of the vitamin D receptor in vivo (2020)
Journal Article
Bass, J. J., Kazi, A. A., Deane, C. S., Nakhuda, A., Ashcroft, S. P., Brook, M. S., …Atherton, P. J. (2021). The mechanisms of skeletal muscle atrophy in response to transient knockdown of the vitamin D receptor in vivo. Journal of Physiology, 599(3), 963-979. https://doi.org/10.1113/JP280652

Key points: Reduced vitamin D receptor (VDR) expression prompts skeletal muscle atrophy. Atrophy occurs through catabolic processes, namely the induction of autophagy, while anabolism remains unchanged. In response to VDR-knockdown mitochondrial func... Read More about The mechanisms of skeletal muscle atrophy in response to transient knockdown of the vitamin D receptor in vivo.

Associations between plasma branched chain amino acids and health biomarkers in response to resistance exercise training across age (2020)
Journal Article
Sayda, M. H., Phillips, B. E., Williams, J. P., Greenhaff, P. L., Wilkinson, D. J., Smith, K., & Atherton, P. J. (2020). Associations between plasma branched chain amino acids and health biomarkers in response to resistance exercise training across age. Nutrients, 12(10), Article 3029. https://doi.org/10.3390/nu12103029

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Leucine, isoleucine and valine (i.e., the branched chain amino acids, BCAA) play a key role in the support and regulation of tissue protein regulation and also as energy substrates. However, p... Read More about Associations between plasma branched chain amino acids and health biomarkers in response to resistance exercise training across age.

Targeted genotype analyses of GWAS-derived lean body mass and handgrip strength-associated single nucleotide polymorphisms in elite masters athletes (2020)
Journal Article
Crossland, H., Piasecki, J., McCormick, D., Phillips, B. E., Wilkinson, D. J., Smith, K., …Atherton, P. J. (2020). Targeted genotype analyses of GWAS-derived lean body mass and handgrip strength-associated single nucleotide polymorphisms in elite masters athletes. AJP - Regulatory, Integrative and Comparative Physiology, 319(2), R184-R194. https://doi.org/10.1152/ajpregu.00110.2020

Recent large genome-wide association studies (GWAS) have independently identified a set of genetic loci associated with lean body mass (LBM) and handgrip strength (HGS). Evaluation of these candidate single nucleotide polymorphisms (SNPs) may be usef... Read More about Targeted genotype analyses of GWAS-derived lean body mass and handgrip strength-associated single nucleotide polymorphisms in elite masters athletes.

The Effect of Whey Protein Supplementation on Myofibrillar Protein Synthesis and Performance Recovery in Resistance-Trained Men (2020)
Journal Article
Davies, R. W., Bass, J. J., Carson, B. P., Norton, C., Kozior, M., Wilkinson, D. J., …Jakeman, P. M. (2020). The Effect of Whey Protein Supplementation on Myofibrillar Protein Synthesis and Performance Recovery in Resistance-Trained Men. Nutrients, 12(3), Article 845. https://doi.org/10.3390/nu12030845

Background: The aim of this study was to investigate the effect of whey protein supplementation on myofibrillar protein synthesis (myoPS) and muscle recovery over a 7-d period of intensified resistance training (RT). Methods: In a double-blind random... Read More about The Effect of Whey Protein Supplementation on Myofibrillar Protein Synthesis and Performance Recovery in Resistance-Trained Men.

High-intensity interval training produces a significant improvement in fitness in less than 31 days before surgery for urological cancer: a randomised control trial (2020)
Journal Article
Blackwell, J. E. M., Doleman, B., Boereboom, C. L., Morton, A., Williams, S., Atherton, P., …Lund, J. N. (2020). High-intensity interval training produces a significant improvement in fitness in less than 31 days before surgery for urological cancer: a randomised control trial. Prostate Cancer and Prostatic Diseases, 23, 696–704. https://doi.org/10.1038/s41391-020-0219-1

Objectives To assess the efficacy of high-intensity interval training (HIIT) for improving cardiorespiratory fitness (CRF) in patients awaiting resection for urological malignancy within four weeks. Subjects/patients and methods A randomised... Read More about High-intensity interval training produces a significant improvement in fitness in less than 31 days before surgery for urological cancer: a randomised control trial.

Differential Stimulation of Post-Exercise Myofibrillar Protein Synthesis in Humans Following Isonitrogenous, Isocaloric Pre-Exercise Feeding (2019)
Journal Article
Davies, R. W., Bass, J. J., Carson, B. P., Norton, C., Kozior, M., Amigo-Benavent, M., …Jakeman, P. M. (2019). Differential Stimulation of Post-Exercise Myofibrillar Protein Synthesis in Humans Following Isonitrogenous, Isocaloric Pre-Exercise Feeding. Nutrients, 11(7), Article 1657. https://doi.org/10.3390/nu11071657

The aim of this study was to test the effects of two disparate isonitrogenous, isocaloric pre-exercise feeds on deuterium-oxide (D2O) derived measures of myofibrillar protein synthesis (myoPS) in humans. Methods: In a double-blind parallel group desi... Read More about Differential Stimulation of Post-Exercise Myofibrillar Protein Synthesis in Humans Following Isonitrogenous, Isocaloric Pre-Exercise Feeding.

The acute transcriptional response to resistance exercise: impact of age and contraction mode (2019)
Journal Article
Deane, C. S., Ames, R. M., Phillips, B. E., Weedon, M. N., Willis, C. R., Boereboom, C., …Etheridge, T. (2019). The acute transcriptional response to resistance exercise: impact of age and contraction mode. Aging, 11(7), 2111-2126. https://doi.org/10.18632/aging.101904

Optimization of resistance exercise (RE) remains a hotbed of research for muscle building and maintenance. However, the interactions between the contractile components of RE (i.e. concentric (CON) and eccentric (ECC)) and age, are poorly defined. We... Read More about The acute transcriptional response to resistance exercise: impact of age and contraction mode.