Skip to main content

Research Repository

Advanced Search

All Outputs (10)

Four Redox Isomers of a [3 × 3] Copper–Iron Heterometal Grid (2023)
Journal Article
Sato, H., Onuki, T., Newton, G. N., Shiga, T., & Oshio, H. (2023). Four Redox Isomers of a [3 × 3] Copper–Iron Heterometal Grid. Inorganic Chemistry, 62(44), 18003-18008. https://doi.org/10.1021/acs.inorgchem.3c02498

A mixed-valence heterometallic nonanuclear [3 × 3] grid complex, [CuI2CuII6FeIII(L)6](BF4)5·MeOH·9H2O (1; MeOH = methanol), was synthesized by a one-pot reaction of copper and iron ions with multidentate ligand 2,6-bis[5-(2-pyridinyl)-1H-pyrazol-3-yl... Read More about Four Redox Isomers of a [3 × 3] Copper–Iron Heterometal Grid.

Selective electrochemical CO 2 conversion with a hybrid polyoxometalate (2023)
Journal Article
Kuramochi, S., Cameron, J. M., Fukui, T., Jones, K. D., Argent, S. P., Kusaka, S., …Newton, G. N. (2023). Selective electrochemical CO 2 conversion with a hybrid polyoxometalate. Chemical Communications, 59(72), 10801-10804. https://doi.org/10.1039/d3cc02138f

A multi-component coordination compound, in which ruthenium antenna complexes are connected to a polyoxotungstate core is presented. This hybrid cluster effectively promotes the electrochemical conversion of CO2 to C1 feedstocks, the selectivity of w... Read More about Selective electrochemical CO 2 conversion with a hybrid polyoxometalate.

Silver(I)-Catalyzed Synthesis of Cuneanes from Cubanes and their Investigation as Isosteres (2023)
Journal Article
Smith, E., Jones, K. D., O’Brien, L., Argent, S. P., Salome, C., Lefebvre, Q., …Lam, H. W. (2023). Silver(I)-Catalyzed Synthesis of Cuneanes from Cubanes and their Investigation as Isosteres. Journal of the American Chemical Society, 145(30), 16365-16373. https://doi.org/10.1021/jacs.3c03207

Bridged or caged polycyclic hydrocarbons have rigid structures that project substituents into precise regions of 3D space, making them attractive as linking groups in materials science and as building blocks for medicinal chemistry. The efficient syn... Read More about Silver(I)-Catalyzed Synthesis of Cuneanes from Cubanes and their Investigation as Isosteres.

A lithium-air battery and gas handling system demonstrator (2023)
Journal Article
Jordan, J. W., Vailaya, G., Holc, C., Jenkins, M., McNulty, R. C., Puscalau, C., …Johnson, L. R. (2024). A lithium-air battery and gas handling system demonstrator. Faraday Discussions, 248, 381-391. https://doi.org/10.1039/d3fd00137g

The lithium-air (Li-air) battery offers one of the highest practical specific energy densities of any battery system at >400 W h kgsystem−1. The practical cell is expected to operate in air, which is flowed into the positive porous electrode where it... Read More about A lithium-air battery and gas handling system demonstrator.

Application of a Synthetic Ferredoxin‐Inspired [4Fe4S]‐Peptide Maquette as the Redox Partner for an [FeFe]‐Hydrogenase (2023)
Journal Article
Bombana, A., Shanmugam, M., Collison, D., Kibler, A. J., Newton, G. N., Jäger, C. M., …Mitchell, N. J. (2023). Application of a Synthetic Ferredoxin‐Inspired [4Fe4S]‐Peptide Maquette as the Redox Partner for an [FeFe]‐Hydrogenase. ChemBioChem, 24(18), Article e202300250. https://doi.org/10.1002/cbic.202300250

‘Bacterial-type’ ferredoxins host a cubane [4Fe4S]2+/+ cluster that enables these proteins to mediate electron transfer and facilitate a broad range of biological processes. Peptide maquettes based on the conserved cluster-forming motif have previous... Read More about Application of a Synthetic Ferredoxin‐Inspired [4Fe4S]‐Peptide Maquette as the Redox Partner for an [FeFe]‐Hydrogenase.

Hydroperoxide-Mediated Degradation of Acetonitrile in the Lithium–Air Battery (2023)
Journal Article
McNulty, R. C., Jones, K. D., Holc, C., Jordan, J. W., Bruce, P. G., Walsh, D. A., …Johnson, L. R. (2023). Hydroperoxide-Mediated Degradation of Acetonitrile in the Lithium–Air Battery. Advanced Energy Materials, 13(3), Article 2300579. https://doi.org/10.1002/aenm.202300579

Understanding and eliminating degradation of the electrolyte solution is arguably the major challenge in the development of high energy density lithium–air batteries. The use of acetonitrile provides cycle stability comparable to current state-of-the... Read More about Hydroperoxide-Mediated Degradation of Acetonitrile in the Lithium–Air Battery.

Diphosphoryl‐functionalized Polyoxometalates: Structurally and Electronically Tunable Hybrid Molecular Materials (2023)
Journal Article
Amin, S. S., Jones, K. D., Kibler, A. J., Damian, H. A., Cameron, J. M., Butler, K. S., …Newton, G. N. (2023). Diphosphoryl‐functionalized Polyoxometalates: Structurally and Electronically Tunable Hybrid Molecular Materials. Angewandte Chemie International Edition, 62(23), Article e202302446. https://doi.org/10.1002/anie.202302446

Herein, we report the synthesis and characterization of a new class of hybrid Wells–Dawson polyoxometalate (POM) containing a diphosphoryl group (P2O6X) of the general formula [P2W17O57(P2O6X)]6− (X=O, NH, or CR1R2). Modifying the bridging unit X was... Read More about Diphosphoryl‐functionalized Polyoxometalates: Structurally and Electronically Tunable Hybrid Molecular Materials.

Voltammetric Evidence of Proton Transport through the Sidewalls of Single-Walled Carbon Nanotubes (2023)
Journal Article
Jordan, J. W., Mortiboy, B., Khlobystov, A. N., Johnson, L. R., Newton, G. N., & Walsh, D. A. (2023). Voltammetric Evidence of Proton Transport through the Sidewalls of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 145(16), 9052–9058. https://doi.org/10.1021/jacs.3c00554

Understanding ion transport in solid materials is crucial in the design of electrochemical devices. Of particular interest in recent years is the study of ion transport across 2-dimensional, atomically thin crystals. In this contribution, we describe... Read More about Voltammetric Evidence of Proton Transport through the Sidewalls of Single-Walled Carbon Nanotubes.

Electronic Structure and Photoactivity of Organoarsenic Hybrid Polyoxometalates (2023)
Journal Article
Kibler, A. J., Tsang, N., Winslow, M., Argent, S. P., Lam, H. W., Robinson, D., & Newton, G. N. (2023). Electronic Structure and Photoactivity of Organoarsenic Hybrid Polyoxometalates. Inorganic Chemistry, 62(8), 3585-3591. https://doi.org/10.1021/acs.inorgchem.2c04249

Organofunctionalization of polyoxometalates (POMs) allows the preparation of hybrid molecular systems with tunable electronic properties. Currently, there are only a handful of approaches that allow for the fine-tuning of POM frontier molecular orbit... Read More about Electronic Structure and Photoactivity of Organoarsenic Hybrid Polyoxometalates.

Self-Assembled Surfactant-Polyoxovanadate Soft Materials as Tuneable Vanadium Oxide Cathode Precursors for Lithium-Ion Batteries (2023)
Journal Article
McNulty, R. C., Penston, K., Amin, S. S., Stal, S., Lee, J. Y., Samperi, M., …Newton, G. N. (2023). Self-Assembled Surfactant-Polyoxovanadate Soft Materials as Tuneable Vanadium Oxide Cathode Precursors for Lithium-Ion Batteries. Angewandte Chemie International Edition, 62(12), Article e202216066. https://doi.org/10.1002/anie.202216066

The mixing of [V10O28]6− decavanadate anions with a dicationic gemini surfactant (gem) leads to the spontaneous self-assembly of surfactant-templated nanostructured arrays of decavanadate clusters. Calcination of the material under air yields highly... Read More about Self-Assembled Surfactant-Polyoxovanadate Soft Materials as Tuneable Vanadium Oxide Cathode Precursors for Lithium-Ion Batteries.