Skip to main content

Research Repository

Advanced Search

All Outputs (332)

Information Technologies for Distributed Machine Drives: An Overview (2019)
Conference Proceeding
Savi, F., Buticchi, G., Gerada, C., Wheeler, P., & Barater, D. (2019). Information Technologies for Distributed Machine Drives: An Overview. In 2019 IEEE International Electric Machines & Drives Conference (IEMDC) (1805-1809). https://doi.org/10.1109/IEMDC.2019.8785232

The exponential growth experienced by the semiconductor manufacturing field has led to a large proliferation of devices with large amounts computational power, enabling countless technologies and revolutionizing many fields. Control systems and machi... Read More about Information Technologies for Distributed Machine Drives: An Overview.

Torque Ripple Investigation in Squirrel Cage Induction Machines (2019)
Conference Proceeding
Marfoli, A., Sala, G., Papini, L., Bolognesi, P., & Gerada, C. (2019). Torque Ripple Investigation in Squirrel Cage Induction Machines. In 2019 IEEE International Electric Machines & Drives Conference (IEMDC) (140-146). https://doi.org/10.1109/IEMDC.2019.8785364

Low torque ripple of electrical machines is an important requirement for many different applications. The causes of torque fluctuations in squirrel cage asynchronous induction motors might be a challenging task due to the complex phenomena raised by... Read More about Torque Ripple Investigation in Squirrel Cage Induction Machines.

Single-Phase Open-Circuit Fault Operation of Bearingless Multi-Sector PM Machines (2019)
Conference Proceeding
Wen, Z., Valente, G., Formentini, A., Papini, L., Zanchetta, P., & Gerada, C. (2019). Single-Phase Open-Circuit Fault Operation of Bearingless Multi-Sector PM Machines. In Proceedings of 2019 IEEE International Electric Machines & Drives Conference (IEMDC) (1087-1092). https://doi.org/10.1109/IEMDC.2019.8785111

This paper investigates the single-phase open-circuit fault of a bearingless multi-sector PM synchronous machine. The mathematical model of the suspension force and torque generation is developed for both healthy and faulty conditions. The model is w... Read More about Single-Phase Open-Circuit Fault Operation of Bearingless Multi-Sector PM Machines.

Dual-Rotor Permanent Magnet Motor for Electric Superbike (2019)
Conference Proceeding
Golovanov, D., Galassini, A., Flanagan, L., Gerada, D., Xu, Z., & Gerada, C. (2019). Dual-Rotor Permanent Magnet Motor for Electric Superbike. In 2019 IEEE International Electric Machines & Drives Conference (IEMDC) (951-956). https://doi.org/10.1109/IEMDC.2019.8785287

The demand on high-performance electrical machines has significantly increased for aerospace and transportation industries in recent years. A racing electric motorbike is a suitable platform to validate and prove new concepts and machine topologies b... Read More about Dual-Rotor Permanent Magnet Motor for Electric Superbike.

On the design of partial discharge-free low voltage electrical machines (2019)
Conference Proceeding
Madonna, V., Giangrande, P., Zhao, W., Zhang, H., Gerada, C., & Galea, M. (2019). On the design of partial discharge-free low voltage electrical machines. In 2019 IEEE International Electric Machines & Drives Conference (IEMDC) (1837-1842). https://doi.org/10.1109/IEMDC.2019.8785413

Modern electrical machines employed in transportation applications are required to provide high performance in terms of power (and torque) density. At the same time, being these applications safety-critical, a significant level of reliability and/or... Read More about On the design of partial discharge-free low voltage electrical machines.

Braking torque compensation strategy and thermal behavior of a dual three-phase winding PMSM during short-circuit fault (2019)
Conference Proceeding
Giangrande, P., Madonna, V., Nuzzo, S., Gerada, C., & Galea, M. (2019). Braking torque compensation strategy and thermal behavior of a dual three-phase winding PMSM during short-circuit fault. . https://doi.org/10.1109/iemdc.2019.8785164

© 2019 IEEE. Permanent magnet synchronous machines (PMSMs)employing the dual three-phase winding represent a suitable solution for complying with the reliability requirements typically needed in safety-critical applications. Their inherent fault-tole... Read More about Braking torque compensation strategy and thermal behavior of a dual three-phase winding PMSM during short-circuit fault.

Simplified Analytical Machine Sizing for Surface Mounted Permanent Magnet Machines (2019)
Conference Proceeding
Xie, P., Ramanathan, R., Vakil, G., & Gerada, C. (2019). Simplified Analytical Machine Sizing for Surface Mounted Permanent Magnet Machines

This paper proposes a simple analytical machine sizing process for a three-phase surface mounted permanent magnet synchronous machines appropriate for both system level analysis and preliminary machine design. For system-level analysis, the proposed... Read More about Simplified Analytical Machine Sizing for Surface Mounted Permanent Magnet Machines.

Sizing, design, and modelling of aerospace electric drive system with long feeder cables (2019)
Conference Proceeding
Xie, P., Vakil, G., & Gerarda, C. (2019). Sizing, design, and modelling of aerospace electric drive system with long feeder cables

The aviation industry is tending towards more electric aircraft, replacing conventionally pneumatic, hydraulic, and mechanical systems with electrical solutions. The electrification of actuators is motivated by increased efficiency, reduced maintenan... Read More about Sizing, design, and modelling of aerospace electric drive system with long feeder cables.

Thermal overload and insulation aging of short duty cycle, aerospace motors (2019)
Journal Article
Madonna, V., Giangrande, P., Lusuardi, L., Cavallini, A., Gerada, C., & Galea, M. (2019). Thermal overload and insulation aging of short duty cycle, aerospace motors. IEEE Transactions on Industrial Electronics, 67(4), 2618-2629. https://doi.org/10.1109/tie.2019.2914630

Electrical machines for transportation applications need to be highly reliable, particularly if they drive safety-critical systems. At the same time, another main requirement is represented by the significant torque density, especially for aerospace,... Read More about Thermal overload and insulation aging of short duty cycle, aerospace motors.

A Novel Concept of Ribless Synchronous Reluctance Motor for Enhanced Torque Capability (2019)
Journal Article
Bao, Y., Degano, M., Wang, S., Chuan, L., Xu, Z., Zhang, H., & Gerada, C. (2020). A Novel Concept of Ribless Synchronous Reluctance Motor for Enhanced Torque Capability. IEEE Transactions on Industrial Electronics, 67(4), 2553-2563. https://doi.org/10.1109/tie.2019.2914616

The rotor structure of synchronous reluctance machines (SynRel) is conventionally retained mechanically by iron ribs. In this paper a novel structure for high speed synchronous reluctance rotor is presented. The novelty of this work is the proof of a... Read More about A Novel Concept of Ribless Synchronous Reluctance Motor for Enhanced Torque Capability.

A Nonlinear Extended State Observer for Rotor Position and Speed Estimation for Sensorless IPMSM Drives (2019)
Journal Article
Xu, Z. J., Zhang, T., Bao, Y., Zhang, H., & Gerada, C. (2020). A Nonlinear Extended State Observer for Rotor Position and Speed Estimation for Sensorless IPMSM Drives. IEEE Transactions on Power Electronics, 35(1), 733-743. https://doi.org/10.1109/tpel.2019.2914119

© 1986-2012 IEEE. Sensorless machine drives in vehicle traction frequently experience rapidly-changing load disturbance and demand fast speed dynamics. Without gain-scheduling or compensation, conventional quadrature phase-locked-loop (Q-PLL) is unab... Read More about A Nonlinear Extended State Observer for Rotor Position and Speed Estimation for Sensorless IPMSM Drives.

Coupling calculation and analysis of three-dimensional temperature and fluid field for high-power high-speed permanent magnet machine (2019)
Journal Article
Wang, T., Zhang, Y., Wen, F., Gerada, C., Liu, G., Rui, D., & Zerun, W. (2019). Coupling calculation and analysis of three-dimensional temperature and fluid field for high-power high-speed permanent magnet machine. IET Electric Power Applications, 13(6), 812-818. https://doi.org/10.1049/iet-epa.2018.5725

© The Institution of Engineering and Technology 2019. In order to accurately estimate the temperature rise for high-power high-speed permanent magnet machines (HSPMMs), a novel temperature calculation method considering the non-linear variation of ma... Read More about Coupling calculation and analysis of three-dimensional temperature and fluid field for high-power high-speed permanent magnet machine.

Active Thermal Control for Power Converters in Modular Winding Permanent Magnet Synchronous Motor (2019)
Conference Proceeding
Yan, H., Buticchi, G., Yang, J., Zhao, W., Zhang, H., & Gerada, C. (2019). Active Thermal Control for Power Converters in Modular Winding Permanent Magnet Synchronous Motor. In Proceedings - 2019 IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG) (1-6). https://doi.org/10.1109/CPE.2019.8862416

To increase the reliability and reduce the torque ripple, modular winding structure has been employed in the Permanent Magnet Synchronous Motors (PMSMs). However, the reliability of the motor system depends on the lifetime of the power semiconductor... Read More about Active Thermal Control for Power Converters in Modular Winding Permanent Magnet Synchronous Motor.

Reduced Order Lumped Parameter Thermal Network for Dual Three-Phase Permanent Magnet Machines (2019)
Conference Proceeding
Giangrande, P., Madonna, V., Nuzzo, S., Spagnolo, C., Gerada, C., & Galea, M. (2019). Reduced Order Lumped Parameter Thermal Network for Dual Three-Phase Permanent Magnet Machines. In Proceedings 2019 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD) (71-76). https://doi.org/10.1109/WEMDCD.2019.8887772

© 2019 IEEE. In recent years, electrical machines are employed in an ever-increasing number of safety-critical applications, which require high power density, along with a demanding level of reliability and/or fault-tolerance capability. Multi-phase... Read More about Reduced Order Lumped Parameter Thermal Network for Dual Three-Phase Permanent Magnet Machines.

Control Strategy for Five-Phase Dual-Stator Winding Induction Starter/Generator System (2019)
Journal Article
Liu, H., Bu, F., Huang, W., Liu, L., Hu, Y., Degano, M., & Gerada, C. (2020). Control Strategy for Five-Phase Dual-Stator Winding Induction Starter/Generator System. IEEE Transactions on Industrial Electronics, 67(4), 2607-2617 . https://doi.org/10.1109/TIE.2019.2912767

This paper presents an integrated control strategy for a starter/generator (S/G) system based on five-phase dual-stator winding induction machine (FPDWIM). The FPDWIM has a cage-type rotor and two sets of stator windings. One is a five-phase control... Read More about Control Strategy for Five-Phase Dual-Stator Winding Induction Starter/Generator System.

An accurate wide-speed range control method of IPMSM considering resistive voltage drop and magnetic saturation (2019)
Journal Article
Gerada, C., Galassini, A., Degano, M., Kang, J., & Wang, S. (2020). An accurate wide-speed range control method of IPMSM considering resistive voltage drop and magnetic saturation. IEEE Transactions on Industrial Electronics, 67(4), 2630-2641 . https://doi.org/10.1109/TIE.2019.2912766

This paper deals with the high accurate current set-points solution for Interior Permanent-Magnet Synchronous Motors (IPMSM) in wide-speed range applications. Considering voltage and current constraints, the operating regions can be divided into Maxi... Read More about An accurate wide-speed range control method of IPMSM considering resistive voltage drop and magnetic saturation.

Asymmetrical Flux Density Distribution in Stator Teeth of Surface Permanent Magnet Machines (2019)
Conference Proceeding
Sala, G., De Gaetano, D., Degano, M., & Gerada, C. (2019). Asymmetrical Flux Density Distribution in Stator Teeth of Surface Permanent Magnet Machines. In Proceedings - 2019 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD) (29-33). https://doi.org/10.1109/WEMDCD.2019.8887831

This work is showing in detail the flux density behaviour in the stator teeth of a synchronous machine. A 3-phase Surface Permanent Magnet (SPM) motor is considered. These motors are widely employed in applications where high efficiency and power den... Read More about Asymmetrical Flux Density Distribution in Stator Teeth of Surface Permanent Magnet Machines.

Eddy Current Loss Control in High Speed PM Starter-Generator (2019)
Conference Proceeding
Zhang, X., Zhang, H., Gerada, C., Gerada, D., Li, J., Xu, Z., & Liu, C. (2019). Eddy Current Loss Control in High Speed PM Starter-Generator. In Proceedings: 2019 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD) (46-50). https://doi.org/10.1109/WEMDCD.2019.8887771

This paper highlights the advancement in high speed generation applications along with describing the state of the art in the machine design technologies enabling such an application uptake. Via the investigating on a 250kW high speed PM starter-gene... Read More about Eddy Current Loss Control in High Speed PM Starter-Generator.

Flux-Density Harmonics Analysis of Switched-Flux Permanent Magnet Machines (2019)
Journal Article
Zeng, Z., Shen, Y., Lu, Q., Gerada, D., Wu, B., Huang, X., & Gerada, C. (2019). Flux-Density Harmonics Analysis of Switched-Flux Permanent Magnet Machines. IEEE Transactions on Magnetics, 55(6), 1-7. https://doi.org/10.1109/tmag.2019.2908250

By developing a simple permeance-magnetomotive force (MMF) model of switched-flux permanent magnet (SFPM) machines, the air-gap flux density produced by both PMs and armature current can be derived, in which harmonics with the same order and rotation... Read More about Flux-Density Harmonics Analysis of Switched-Flux Permanent Magnet Machines.

Effective Thermal Conductivity Calculation and Measurement of Litz Wire based on the Porous Metal Materials Structure (2019)
Journal Article
Liu, X., Gerada, D., Xu, Z., Corfield, M., Gerada, C., & Yu, H. (2020). Effective Thermal Conductivity Calculation and Measurement of Litz Wire based on the Porous Metal Materials Structure. IEEE Transactions on Industrial Electronics, 67(4), 2667-2677. https://doi.org/10.1109/tie.2019.2910031

Litz wires are employed in high-frequency electrical machines due to their advantages of reducing the ac losses, including minimizing the skin effect and the proximity effect. In order to improve the reliability of such machines, and enable accurate... Read More about Effective Thermal Conductivity Calculation and Measurement of Litz Wire based on the Porous Metal Materials Structure.