Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Inkjet based 3D Printing of bespoke medical devices that resist bacterial biofilm formation (2020)
Working Paper
He, Y., Begines, B., Luckett, J., Dubern, J., Hook, A., Prina, E., …Wildman, R. D. Inkjet based 3D Printing of bespoke medical devices that resist bacterial biofilm formation

We demonstrate the formulation of advanced functional 3D printing inks that prevent the formation of bacterial biofilms in vivo. Starting from polymer libraries, we show that a biofilm resistant object can be 3D printed with the potential for shape a... Read More about Inkjet based 3D Printing of bespoke medical devices that resist bacterial biofilm formation.

Discovery of (meth)acrylate polymers that resist colonization by fungi associated with pathogenesis and biodeterioration (2020)
Journal Article
Vallieres, C., Hook, A. L., He, Y., Crucitti, V. C., Figueredo, G., Davies, C. R., …Avery, S. V. (2020). Discovery of (meth)acrylate polymers that resist colonization by fungi associated with pathogenesis and biodeterioration. Science Advances, 6(23), Article eaba6574. https://doi.org/10.1126/sciadv.aba6574

© 2020 The Authors. Fungi have major, negative socioeconomic impacts, but control with bioactive agents is increasingly restricted, while resistance is growing. Here, we describe an alternative fungal control strategy via materials operating passivel... Read More about Discovery of (meth)acrylate polymers that resist colonization by fungi associated with pathogenesis and biodeterioration.

Real time monitoring of biofilm formation on coated medical devices for the reduction and interception of bacterial infections (2020)
Journal Article
Kurmoo, Y., Hook, A. L., Harvey, D., Dubern, J., Williams, P., Morgan, S. P., …Alexander, M. R. (2020). Real time monitoring of biofilm formation on coated medical devices for the reduction and interception of bacterial infections. Biomaterials Science, 8(5), 1464-1477. https://doi.org/10.1039/c9bm00875f

Real time monitoring of bacterial attachment to medical devices provides opportunities to detect early biofilm formation and instigate appropriate interventions before infection develops. This study utilises long period grating (LPG) optical fibre se... Read More about Real time monitoring of biofilm formation on coated medical devices for the reduction and interception of bacterial infections.