Skip to main content

Research Repository

Advanced Search

All Outputs (16)

Structure and chemical composition of the Mg electrode during cycling in a simple glyme electrolyte (2024)
Journal Article
Dimogiannis, K., Sankowski, A., Holc, C., Parmenter, C. D., Newton, G. N., Walsh, D. A., …Johnson, L. R. (2024). Structure and chemical composition of the Mg electrode during cycling in a simple glyme electrolyte. Energy Storage Materials, 67, Article 103280. https://doi.org/10.1016/j.ensm.2024.103280

The volumetric energy density of magnesium exceeds that of lithium, making magnesium batteries particularly promising for next-generation energy storage. However, electrochemical cycling of magnesium electrodes in common battery electrolytes is coulo... Read More about Structure and chemical composition of the Mg electrode during cycling in a simple glyme electrolyte.

Direct Deposition of Copper Atoms onto Graphitic Step Edges Lowers Overpotential and Improves Selectivity of Electrocatalytic CO2 Reduction (2024)
Working Paper
Thangamuthu, M., Burwell, T., Aliev, G., Ghaderzadeh, S., Kohlrausch, E., Chen, Y., …Khlobystov, A. Direct Deposition of Copper Atoms onto Graphitic Step Edges Lowers Overpotential and Improves Selectivity of Electrocatalytic CO2 Reduction

Minimizing our reliance on bulk precious metals is to increase the fraction of surface atoms and improve the metal-support interface. In this work, we employ a solvent/ligand/counterion-free method to deposit copper in the atomic form directly onto a... Read More about Direct Deposition of Copper Atoms onto Graphitic Step Edges Lowers Overpotential and Improves Selectivity of Electrocatalytic CO2 Reduction.

Graphene nanoribbons with hBN passivated edges grown by high-temperature molecular beam epitaxy (2023)
Journal Article
Bradford, J., Cheng, T. S., James, T. S., Khlobystov, A. N., Mellor, C. J., Watanabe, K., …Beton, P. H. (2023). Graphene nanoribbons with hBN passivated edges grown by high-temperature molecular beam epitaxy. 2D Materials, 10(3), Article 035035. https://doi.org/10.1088/2053-1583/acdefc

Integration of graphene and hexagonal boron nitride (hBN) in lateral heterostructures has provided a route to broadly engineer the material properties by quantum confinement of electrons or introduction of novel electronic and magnetic states at the... Read More about Graphene nanoribbons with hBN passivated edges grown by high-temperature molecular beam epitaxy.

Unravelling synergistic effects in bi-metallic catalysts: deceleration of palladium–gold nanoparticle coarsening in the hydrogenation of cinnamaldehyde (2023)
Journal Article
Pinto, J., Weilhard, A., Norman, L. T., Lodge, R. W., Rogers, D. M., Gual, A., …Alves Fernandes, J. (2023). Unravelling synergistic effects in bi-metallic catalysts: deceleration of palladium–gold nanoparticle coarsening in the hydrogenation of cinnamaldehyde. Catalysis Science and Technology, https://doi.org/10.1039/d3cy00289f

In this work, we demonstrate that the synergistic effect of PdAu nanoparticles (NPs) in hydrogenation reactions is not only related to high activity but also to their stability when compared to Pd mono-metallic NPs. To demonstrate this, a series of m... Read More about Unravelling synergistic effects in bi-metallic catalysts: deceleration of palladium–gold nanoparticle coarsening in the hydrogenation of cinnamaldehyde.

Subnanometer-Wide Indium Selenide Nanoribbons (2023)
Journal Article
Cull, W. J., Skowron, S. T., Hayter, R., Stoppiello, C. T., Rance, G. A., Biskupek, J., …Khlobystov, A. N. (2023). Subnanometer-Wide Indium Selenide Nanoribbons. ACS Nano, 17(6), 6062-6072. https://doi.org/10.1021/acsnano.3c00670

Indium selenides (InxSey) have been shown to retain several desirable properties, such as ferroelectricity, tunable photoluminescence through temperature-controlled phase changes, and high electron mobility when confined to two dimensions (2D). In th... Read More about Subnanometer-Wide Indium Selenide Nanoribbons.

Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response (2022)
Journal Article
Wadge, M. D., Bird, M. A., Sankowski, A., Constantin, H., Fay, M. W., Cooper, T. P., …Grant, D. M. (2023). Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response. Advanced Materials Interfaces, 10(5), Article 2201523. https://doi.org/10.1002/admi.202201523

This study describes the chemical conversion and heat treatment of Ti6Al4V microspheres (Ti6_MS), and the resulting effects on their electrocatalytic properties. The wet-chemical conversion (5.0m NaOH, 60°C, 24h; Sample label: Ti6_TC) converts the to... Read More about Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response.

Epitaxy of boron nitride monolayers for graphene-based lateral heterostructures (2021)
Journal Article
Wrigley, J., Bradford, J., James, T., Cheng, T. S., Thomas, J., Mellor, C. J., …Beton, P. H. (2021). Epitaxy of boron nitride monolayers for graphene-based lateral heterostructures. 2D Materials, 8(3), 1-10. https://doi.org/10.1088/2053-1583/abea66

Monolayers of hexagonal boron nitride (hBN) are grown on graphite substrates using high-temperature molecular beam epitaxy (HT-MBE). The hBN monolayers are observed to grow predominantly from step edges on the graphite surface and exhibit a strong de... Read More about Epitaxy of boron nitride monolayers for graphene-based lateral heterostructures.

WS2/MoS2 Heterostructures through Thermal Treatment of MoS2 Layers Electrostatically Functionalized with W3S4 Molecular Clusters (2020)
Journal Article
Morant‐Giner, M., Brotons‐Alcázar, I., Shmelev, N. Y., Gushchin, A. L., Norman, L. T., Khlobystov, A. N., …Coronado, E. (2020). WS2/MoS2 Heterostructures through Thermal Treatment of MoS2 Layers Electrostatically Functionalized with W3S4 Molecular Clusters. Chemistry - A European Journal, 26(29), 6670-6678. https://doi.org/10.1002/chem.202000248

The preparation of 2D stacked layers combining flakes of different nature gives rise to countless numbers of heterostructures where new band alignments, defined at the interfaces, control the electronic properties of the system. Among the large famil... Read More about WS2/MoS2 Heterostructures through Thermal Treatment of MoS2 Layers Electrostatically Functionalized with W3S4 Molecular Clusters.

High-temperature molecular beam epitaxy of hexagonal boron nitride with high active nitrogen fluxes (2018)
Journal Article
Cheng, T. S., Summerfield, A., Mellor, C. J., Khlobystov, A. N., Eaves, L., Foxon, C. T., …Novikov, S. V. (2018). High-temperature molecular beam epitaxy of hexagonal boron nitride with high active nitrogen fluxes. Materials, 11(7), https://doi.org/10.3390/ma11071119

Hexagonal boron nitride (hBN) has attracted much attention as a key component in van der Waals heterostructures and as a wide band gap material for deep-ultraviolet devices. We have recently demonstrated plasma-assisted molecular beam epitaxy (PA-MBE... Read More about High-temperature molecular beam epitaxy of hexagonal boron nitride with high active nitrogen fluxes.

Moiré-modulated conductance of hexagonal boron nitride tunnel barriers (2018)
Journal Article
Summerfield, A., Kozikov, A., Cheng, T. S., Davies, A., Cho, Y., Khlobystov, A. N., …Beton, P. H. (in press). Moiré-modulated conductance of hexagonal boron nitride tunnel barriers. Nano Letters, https://doi.org/10.1021/acs.nanolett.8b01223

Monolayer hexagonal boron nitride (hBN) tunnel barriers investigated using conductive atomic force microscopy reveal moiré patterns in the spatial maps of their tunnel conductance consistent with the formation of a moiré superlattice between the hB... Read More about Moiré-modulated conductance of hexagonal boron nitride tunnel barriers.

High-temperature molecular beam epitaxy of hexagonal boron nitride layers (2018)
Journal Article
Cheng, T. S., Summerfield, A., Mellor, C. J., Davies, A., Khlobystov, A. N., Eaves, L., …Novikov, S. V. (in press). High-temperature molecular beam epitaxy of hexagonal boron nitride layers. Journal of Vacuum Science and Technology B, 36(2), Article 02D103-1. https://doi.org/10.1116/1.5011280

The growth and properties of hexagonal boron nitride (hBN) have recently attracted much attention due to applications in graphene-based monolayer thick 2D-structures and at the same time as a wide band gap material for deep-ultraviolet device (DUV) a... Read More about High-temperature molecular beam epitaxy of hexagonal boron nitride layers.

Lattice-Matched Epitaxial Graphene Grown on Boron Nitride (2017)
Journal Article
Davies, A., Albar, J., Summerfield, A., Thomas, J. C., Cheng, T. S., Korolkov, V. V., …Beton, P. H. (2018). Lattice-Matched Epitaxial Graphene Grown on Boron Nitride. Nano Letters, 18(1), 498-504. https://doi.org/10.1021/acs.nanolett.7b04453

Lattice-matched graphene on hexagonal boron nitride is expected to lead to the formation of a band-gap but requires the formation of highly strained material and has not hitherto been realised. We demonstrate that aligned, lattice-matched graphene ca... Read More about Lattice-Matched Epitaxial Graphene Grown on Boron Nitride.

An atomic carbon source for high temperature molecular beam epitaxy of graphene (2017)
Journal Article
Albar, J., Summerfield, A., Cheng, T. S., Davies, A., Smith, E., Khlobystov, A. N., …Novikov, S. V. (in press). An atomic carbon source for high temperature molecular beam epitaxy of graphene. Scientific Reports, 7(1), Article 6598. https://doi.org/10.1038/s41598-017-07021-1

We report the use of a novel atomic carbon source for the molecular beam epitaxy (MBE) of graphene layers on hBN flakes and on sapphire wafers at substrate growth temperatures of ~1400 °C. The source produces a flux of predominantly atomic carbon, wh... Read More about An atomic carbon source for high temperature molecular beam epitaxy of graphene.

Hexagonal Boron Nitride Tunnel Barriers Grown on Graphite by High Temperature Molecular Beam Epitaxy (2016)
Journal Article
Cho, Y., Summerfield, A., Davies, A., Cheng, T. S., Smith, E. F., Mellor, C. J., …Novikov, S. V. (2016). Hexagonal Boron Nitride Tunnel Barriers Grown on Graphite by High Temperature Molecular Beam Epitaxy. Scientific Reports, 6(1), Article 34474. https://doi.org/10.1038/srep34474

We demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting... Read More about Hexagonal Boron Nitride Tunnel Barriers Grown on Graphite by High Temperature Molecular Beam Epitaxy.

Strain-Engineered Graphene Grown on Hexagonal Boron Nitride by Molecular Beam Epitaxy (2016)
Journal Article
Summerfield, A., Davies, A., Cheng, T. S., Korolkov, V. V., Cho, Y., Mellor, C. J., …Beton, P. H. (2016). Strain-Engineered Graphene Grown on Hexagonal Boron Nitride by Molecular Beam Epitaxy. Scientific Reports, 6(1), Article 22440. https://doi.org/10.1038/srep22440

Graphene grown by high temperature molecular beam epitaxy on hexagonal boron nitride (hBN) forms continuous domains with dimensions of order 20 μm, and exhibits moiré patterns with large periodicities, up to ~30 nm, indicating that the layers are hig... Read More about Strain-Engineered Graphene Grown on Hexagonal Boron Nitride by Molecular Beam Epitaxy.

High temperature MBE of graphene on sapphire and hexagonal boron nitride flakes on sapphire (2016)
Journal Article
Cheng, T. S., Davies, A., Summerfield, A., Cho, Y., Cebula, I., Hill, R. J., …Novikov, S. V. (2016). High temperature MBE of graphene on sapphire and hexagonal boron nitride flakes on sapphire. Journal of Vacuum Science and Technology B, 34(2), 02L101. https://doi.org/10.1116/1.4938157

The discovery of graphene and its remarkable electronic properties has provided scientists with a revolutionary material system for electronics and optoelectronics. Here, the authors investigate molecular beam epitaxy (MBE) as a growth method for gra... Read More about High temperature MBE of graphene on sapphire and hexagonal boron nitride flakes on sapphire.