Liang Yan
Magnetic field and torque output of packaged hydraulic torque motor
Yan, Liang; Duan, Zihao; Zhang, Qiongfang; Niu, Shiyong; Dong, Yifeng; Gerada, Christopher
Authors
Zihao Duan
Qiongfang Zhang
Shiyong Niu
Yifeng Dong
Professor CHRISTOPHER GERADA CHRIS.GERADA@NOTTINGHAM.AC.UK
PROFESSOR OF ELECTRICAL MACHINES
Abstract
Hydraulic torque motors are one key component in electro-hydraulic servo valves that convert the electrical signal into mechanical motions. The systematic characteristics analysis of the hydraulic torque motor has not been found in the previous research, including the distribution of the electromagnetic field and torque output, and particularly the relationship between them. In addition, conventional studies of hydraulic torque motors generally assume an evenly distributed magnetic flux field and ignore the influence of special mechanical geometry in the air gaps, which may compromise the accuracy of analyzing the result and the high-precision motion control performance. Therefore, the objective of this study is to conduct a detailed analysis of the distribution of the magnetic field and torque output; the influence of limiting holes in the air gaps is considered to improve the accuracy of both numerical computation and analytical modeling. The structure and working principle of the torque motor are presented first. The magnetic field distribution in the air gaps and the magnetic saturation in the iron blocks are analyzed by using a numerical approach. Subsequently, the torque generation with respect to the current input and assembly errors is analyzed in detail. This shows that the influence of limiting holes on the magnetic field is consistent with that on torque generation. Following this, a novel modified equivalent magnetic circuit is proposed to formulate the torque output of the hydraulic torque motor analytically. The comparison among the modified equivalent magnetic circuit, the conventional modeling approach and the numerical computation is conducted, and it is found that the proposed method helps to improve the modeling accuracy by taking into account the effect of special geometry inside the air gaps.
Citation
Yan, L., Duan, Z., Zhang, Q., Niu, S., Dong, Y., & Gerada, C. (2018). Magnetic field and torque output of packaged hydraulic torque motor. Energies, 11(1), https://doi.org/10.3390/en11010134
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 25, 2017 |
Publication Date | Jan 5, 2018 |
Deposit Date | Feb 7, 2018 |
Publicly Available Date | Feb 7, 2018 |
Journal | Energies |
Electronic ISSN | 1996-1073 |
Publisher | MDPI |
Peer Reviewed | Peer Reviewed |
Volume | 11 |
Issue | 1 |
DOI | https://doi.org/10.3390/en11010134 |
Keywords | packaged torque motor; numerical analysis; magnetic field distribution; magnetic saturation; output performance of torque; mathematical model |
Public URL | https://nottingham-repository.worktribe.com/output/903405 |
Publisher URL | http://www.mdpi.com/1996-1073/11/1/134 |
Contract Date | Feb 7, 2018 |
Files
Magnetic field and torque output of packaged hydraulic torque motor.pdf
(3.3 Mb)
PDF
Copyright Statement
Copyright information regarding this work can be found at the following address: http://creativecommons.org/licenses/by/4.0
You might also like
All-Inorganic Electrical Insulation Systems for High-Power Density Electrical Machines
(2024)
Presentation / Conference Contribution
Multiphysics Sizing of Interior Permanent Magnet Machines Based on Geometric Methodology
(2024)
Journal Article
AFPM Machines Equipped with Multilayer Magnets
(2024)
Journal Article
Life Characterization of PEEK and Nanofilled Enamel Insulated Wires Under Thermal Ageing
(2024)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search