Skip to main content

Research Repository

Advanced Search

Outputs (12)

Wireless electrical–molecular quantum signalling for cancer cell apoptosis (2023)
Journal Article
Jain, A., Gosling, J., Liu, S., Wang, H., Stone, E. M., Chakraborty, S., …Rawson, F. J. (2024). Wireless electrical–molecular quantum signalling for cancer cell apoptosis. Nature Nanotechnology, 19, 106-114. https://doi.org/10.1038/s41565-023-01496-y

Quantum biological tunnelling for electron transfer is involved in controlling essential functions for life such as cellular respiration and homoeostasis. Understanding and controlling the quantum effects in biology has the potential to modulate biol... Read More about Wireless electrical–molecular quantum signalling for cancer cell apoptosis.

Electrochemical Immunosensor for Ultra-Low Detection of Human Papillomavirus Biomarker for Cervical Cancer (2023)
Journal Article
Peteni, S., Ozoemena, O. C., Khawula, T., Haruna, A. B., Rawson, F. J., Shai, L. J., …Ozoemena, K. I. (2023). Electrochemical Immunosensor for Ultra-Low Detection of Human Papillomavirus Biomarker for Cervical Cancer. ACS Sensors, 8(7), 2761-2770. https://doi.org/10.1021/acssensors.3c00677

Human papillomavirus (HPV) is the causative agent for cervical cancer. Of the various types of HPV, the high-risk HPV-16 type is the most important antigenic high-risk HPV. In this work, the antigenic HPV-16 L1 peptide was immobilized on a glassy car... Read More about Electrochemical Immunosensor for Ultra-Low Detection of Human Papillomavirus Biomarker for Cervical Cancer.

Printing biohybrid materials for bioelectronic cardio-3D-cellular constructs (2022)
Journal Article
Sanjuan-Alberte, P., Whitehead, C., Jones, J. N., Silva, J. C., Carter, N., Kellaway, S., …Rawson, F. J. (2022). Printing biohybrid materials for bioelectronic cardio-3D-cellular constructs. iScience, 25(7), Article 104552. https://doi.org/10.1016/j.isci.2022.104552

Conductive hydrogels are emerging as promising materials for bioelectronic applications as they minimize the mismatch between biological and electronic systems. We propose a strategy to bioprint biohybrid conductive bioinks based on decellularized ex... Read More about Printing biohybrid materials for bioelectronic cardio-3D-cellular constructs.

Impedimetric Characterization of Bipolar Nanoelectrodes with Cancer Cells (2021)
Journal Article
Robinson, A. J., Jain, A., Rahman, R., Abayzeed, S., Hague, R. J., & Rawson, F. J. (2021). Impedimetric Characterization of Bipolar Nanoelectrodes with Cancer Cells. ACS Omega, 6(44), 29495-29505. https://doi.org/10.1021/acsomega.1c03547

Merging of electronics with biology, defined as bioelectronics, at the nanoscale holds considerable promise for sensing and modulating cellular behavior. Advancing our understanding of nanobioelectronics will facilitate development and enable applica... Read More about Impedimetric Characterization of Bipolar Nanoelectrodes with Cancer Cells.

Electric Field Induced Biomimetic Transmembrane Electron Transport Using Carbon Nanotube Porins (2021)
Journal Article
Hicks, J. M., Yao, Y.-C., Barber, S., Neate, N., Watts, J. A., Noy, A., & Rawson, F. J. (2021). Electric Field Induced Biomimetic Transmembrane Electron Transport Using Carbon Nanotube Porins. Small, 17(32), Article 2102517. https://doi.org/10.1002/smll.202102517

Cells modulate their homeostasis through the control of redox reactions via transmembrane electron transport systems. These are largely mediated via oxidoreductase enzymes. Their use in biology has been linked to a host of systems including reprogram... Read More about Electric Field Induced Biomimetic Transmembrane Electron Transport Using Carbon Nanotube Porins.

Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles (2020)
Journal Article
Jain, A., Trindade, G. F., Hicks, J. M., Potts, J. C., Rahman, R., J. M. Hague, R., …Rawson, F. J. (2021). Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles. Journal of Colloid and Interface Science, 587, 150-161. https://doi.org/10.1016/j.jcis.2020.12.025

Protein orientation in nanoparticle-protein conjugates plays a crucial role in binding to cell receptors and ultimately, defines their targeting efficiency. Therefore, understanding fundamental aspects of the role of protein orientation upon adsorpti... Read More about Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles.

Modulating the Biological Function of Protein by Tailoring the Adsorption Orientation on Nanoparticles (2020)
Other
Jain, A., Trindade, G., Hicks, J. M., Potts, J. C., Rahman, R., Hague, R., …Rawson, F. Modulating the Biological Function of Protein by Tailoring the Adsorption Orientation on Nanoparticles

Protein orientation in nanoparticle-protein conjugates plays a crucial role in binding to cell receptors and ultimately, defines their targeting efficiency. Therefore, understanding fundamental aspects of the role of protein orientation upon adsorpti... Read More about Modulating the Biological Function of Protein by Tailoring the Adsorption Orientation on Nanoparticles.

Wireless Nanobioelectronics for Electrical Intracellular Sensing (2019)
Journal Article
Sanjuan-Alberte, P., Jain, A., Shaw, A. J., Abayzeed, S. A., Domínguez, R. F., Alea-Reyes, M. E., …Rawson, F. J. (2019). Wireless Nanobioelectronics for Electrical Intracellular Sensing. ACS Applied Nano Materials, 2(10), 6397-6408. https://doi.org/10.1021/acsanm.9b01374

For the field of bioelectronics to make an impact on healthcare, there is an urgent requirement for the development of “wireless” electronic systems to enable modulation of chemistry inside of cells. Herein we report on an intracellular wireless elec... Read More about Wireless Nanobioelectronics for Electrical Intracellular Sensing.

Multifunctional Bioinstructive 3D Architectures to Modulate Cellular Behavior (2019)
Journal Article
Vaithilingam, J., Sanjuan‐Alberte, P., Campora, S., Rance, G. A., Jiang, L., Thorpe, J., …Rawson, F. J. (2019). Multifunctional Bioinstructive 3D Architectures to Modulate Cellular Behavior. Advanced Functional Materials, 29(38), Article 1902016. https://doi.org/10.1002/adfm.201902016

Biological structures control cell behavior via physical, chemical, electrical, and mechanical cues. Approaches that allow us to build devices that mimic these cues in a combinatorial way are lacking due to there being no suitable instructive materia... Read More about Multifunctional Bioinstructive 3D Architectures to Modulate Cellular Behavior.

Remotely controlled in situ growth of silver microwires forming bioelectronic interfaces (2019)
Journal Article
Sanjuan-Alberte, P., Saleh, E., Shaw, A. J., Lacalendola, N., Willmott, G., Vaithilingam, J., …Rawson, F. J. (2019). Remotely controlled in situ growth of silver microwires forming bioelectronic interfaces. ACS Applied Materials and Interfaces, 11(9), 8928-8936. https://doi.org/10.1021/acsami.8b22075

There is a pressing need to advance our ability to construct three-dimensional (3D) functional bioelectronic interfaces. Additionally, to ease the transition to building cellular electronic systems, a remote approach to merge electrical components wi... Read More about Remotely controlled in situ growth of silver microwires forming bioelectronic interfaces.