Skip to main content

Research Repository

Advanced Search

Outputs (39)

Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet (2023)
Journal Article
de la Fuente, C., Grondin, A., Sine, B., Debieu, M., Belin, C., Hajjarpoor, A., …Laplaze, L. (2023). Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet. eLife, 12, Article RP86169. https://doi.org/10.7554/elife.86169.3

Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet’s early root sy... Read More about Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet.

Loss of ancestral function in duckweed roots is accompanied by progressive anatomical reduction and a re-distribution of nutrient transporters (2023)
Journal Article
Ware, A., Jones, D. H., Flis, P., Chrysanthou, E., Smith, K. E., Kümpers, B. M., …Bishopp, A. (2023). Loss of ancestral function in duckweed roots is accompanied by progressive anatomical reduction and a re-distribution of nutrient transporters. Current Biology, 33(9), 1795-1802. https://doi.org/10.1016/j.cub.2023.03.025

Organ loss occurs frequently during plant and animal evolution. Sometimes, non-functional organs are retained through evolution. Vestigial organs are defined as genetically determined structures that have lost their ancestral (or salient) function. D... Read More about Loss of ancestral function in duckweed roots is accompanied by progressive anatomical reduction and a re-distribution of nutrient transporters.

Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat (2022)
Journal Article
Kareem, S. H., Hawkesford, M. J., DeSilva, J., Weerasinghe, M., Wells, D. M., Pound, M. P., …Foulkes, M. J. (2022). Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat. European Journal of Agronomy, 140, Article 126603. https://doi.org/10.1016/j.eja.2022.126603

Root system architecture (RSA) is important in optimizing the use of nitrogen. High-throughput phenotyping techniques may be used to study root system architecture traits under controlled environments. A root phenotyping platform, consisting of germi... Read More about Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat.

Root system size and root hair length are key phenes for nitrate acquisition and biomass production across natural variation in Arabidopsis (2022)
Journal Article
De Pessemier, J., Moturu, T. R., Nacry, P., Ebert, R., De Gernier, H., Tillard, P., …Hermans, C. (2022). Root system size and root hair length are key phenes for nitrate acquisition and biomass production across natural variation in Arabidopsis. Journal of Experimental Botany, 73(11), 3569-3583

The role of root phenes in nitrogen (N) acquisition and biomass production was evaluated in 10 contrasting natural accessions of Arabidopsis thaliana L. Seedlings were grown on vertical agar plates with two different nitrate supplies. The low N treat... Read More about Root system size and root hair length are key phenes for nitrate acquisition and biomass production across natural variation in Arabidopsis.

Systems approaches reveal that ABCB and PIN proteins mediate co-dependent auxin efflux (2022)
Journal Article
Mellor, N. L., Voß, U., Ware, A., Janes, G., Barrack, D., Bishopp, A., …Band, L. R. (2022). Systems approaches reveal that ABCB and PIN proteins mediate co-dependent auxin efflux. Plant Cell, 34(6), 2309–2327. https://doi.org/10.1093/plcell/koac086

Members of the B family of membrane-bound ATP-binding cassette (ABC) transporters represent key components of the auxin-efflux machinery in plants. Over the last two decades experimental studies have shown that modifying ABCB expression affects auxin... Read More about Systems approaches reveal that ABCB and PIN proteins mediate co-dependent auxin efflux.

Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat (2022)
Journal Article
GRIFFITHS, M., ATKINSON, J. A., Gardiner, L. J., SWARUP, R., POUND, M. P., WILSON, M. H., …WELLS, D. M. (2022). Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat. Journal of Integrative Agriculture, 21(4), 917-932. https://doi.org/10.1016/s2095-3119%2821%2963700-0

The root system architecture (RSA) of a crop has a profound effect on the uptake of nutrients and consequently the potential yield. However, little is known about the genetic basis of RSA and resource adaptive responses in wheat (Triticum aestivum L.... Read More about Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat.

A European perspective on opportunities and demands for field-based crop phenotyping (2021)
Journal Article
Morisse, M., Wells, D. M., Millet, E. J., Lillemo, M., Fahrner, S., Cellini, F., …Janni, M. (2022). A European perspective on opportunities and demands for field-based crop phenotyping. Field Crops Research, 276, Article 108371. https://doi.org/10.1016/j.fcr.2021.108371

The challenges of securing future food security will require deployment of innovative technologies to accelerate crop production. Plant phenotyping methods have advanced significantly, spanning low-cost hand-held devices to large-scale satellite imag... Read More about A European perspective on opportunities and demands for field-based crop phenotyping.

Dual expression and anatomy lines allow simultaneous visualization of gene expression and anatomy (2021)
Journal Article
Kümpers, B. M. C., Han, J., Vaughan-Hirsch, J., Redman, N., Ware, A., Atkinson, J. A., …Bishopp, A. (2022). Dual expression and anatomy lines allow simultaneous visualization of gene expression and anatomy. Plant Physiology, 188(1), 56-69. https://doi.org/10.1093/plphys/kiab503

Studying the developmental genetics of plant organs, requires following gene expression in specific tissues. To facilitate this, we have developed the Dual Expression Anatomy Lines (DEAL), which incorporate a red plasma membrane marker alongside a fl... Read More about Dual expression and anatomy lines allow simultaneous visualization of gene expression and anatomy.

Non-invasive hydrodynamic imaging in plant roots at cellular resolution (2021)
Journal Article
Pascut, F. C., Couvreur, V., Dietrich, D., Leftley, N., Reyt, G., Boursiac, Y., …Webb, K. F. (2021). Non-invasive hydrodynamic imaging in plant roots at cellular resolution. Nature Communications, 12(1), 1-7. https://doi.org/10.1038/s41467-021-24913-z

A key impediment to studying water-related mechanisms in plants is the inability to non-invasively image water fluxes in cells at high temporal and spatial resolution. Here, we report that Raman microspectroscopy, complemented by hydrodynamic modelli... Read More about Non-invasive hydrodynamic imaging in plant roots at cellular resolution.

Preparation, Scanning and Analysis of Duckweed Using X-Ray Computed Microtomography (2021)
Journal Article
Jones, D. H., Atkinson, B., Ware, A., Sturrock, C. J., Bishopp, A., & Wells, D. M. (2021). Preparation, Scanning and Analysis of Duckweed Using X-Ray Computed Microtomography. Frontiers in Plant Science, 11, Article 617830. https://doi.org/10.3389/fpls.2020.617830

© Copyright © 2021 Jones, Atkinson, Ware, Sturrock, Bishopp and Wells. Quantification of anatomical and compositional features underpins both fundamental and applied studies of plant structure and function. Relatively few non-invasive techniques are... Read More about Preparation, Scanning and Analysis of Duckweed Using X-Ray Computed Microtomography.