Skip to main content

Research Repository

Advanced Search

Outputs (23)

Band gap measurements of monolayer h-BN and insights into carbon-related point defects (2021)
Journal Article
Román, R. J. P., Costa, F. J. R., Zobelli, A., Elias, C., Valvin, P., Cassabois, G., …Zagonel, L. F. (2021). Band gap measurements of monolayer h-BN and insights into carbon-related point defects. 2D Materials, 8(4), Article 044001. https://doi.org/10.1088/2053-1583/ac0d9c

Being a flexible wide band gap semiconductor, hexagonal boron nitride (h-BN) has great potential for technological applications like efficient deep ultraviolet light sources, building block for two-dimensional heterostructures and room temperature si... Read More about Band gap measurements of monolayer h-BN and insights into carbon-related point defects.

Epitaxy of boron nitride monolayers for graphene-based lateral heterostructures (2021)
Journal Article
Wrigley, J., Bradford, J., James, T., Cheng, T. S., Thomas, J., Mellor, C. J., …Beton, P. H. (2021). Epitaxy of boron nitride monolayers for graphene-based lateral heterostructures. 2D Materials, 8(3), 1-10. https://doi.org/10.1088/2053-1583/abea66

Monolayers of hexagonal boron nitride (hBN) are grown on graphite substrates using high-temperature molecular beam epitaxy (HT-MBE). The hBN monolayers are observed to grow predominantly from step edges on the graphite surface and exhibit a strong de... Read More about Epitaxy of boron nitride monolayers for graphene-based lateral heterostructures.

Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride (2020)
Journal Article
Mendelson, N., Chugh, D., Reimers, J. R., Cheng, T. S., Gottscholl, A., Long, H., …Aharonovich, I. (2021). Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nature Materials, 20(3), 321-328. https://doi.org/10.1038/s41563-020-00850-y

Single-photon emitters (SPEs) in hexagonal boron nitride (hBN) have garnered increasing attention over the last few years due to their superior optical properties. However, despite the vast range of experimental results and theoretical calculations,... Read More about Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride.

Magnetic flux quantum periodicity of the frequency of the on-chip detectable electromagnetic radiation from superconducting flux-flow-oscillators (2020)
Journal Article
Chesca, B., John, D., Gaifullin, M., Cox, J., Murphy, A., Savel'ev, S., & Mellor, C. J. (2020). Magnetic flux quantum periodicity of the frequency of the on-chip detectable electromagnetic radiation from superconducting flux-flow-oscillators. Applied Physics Letters, 117(14), Article 142601. https://doi.org/10.1063/5.0021970

Superconducting flux-flow-oscillators (FFOs) based on unidirectional flow of magnetic vortices in a single-long Josephson junction (JJ) and operating at 4.2 K are key elements of sub-terahertz integrated-receivers used in radio-astronomy and atmosphe... Read More about Magnetic flux quantum periodicity of the frequency of the on-chip detectable electromagnetic radiation from superconducting flux-flow-oscillators.

Photo-quantum Hall effect and light-induced charge transfer at the interface of graphene/InSe heterostructures (2018)
Journal Article
Bhuiyan, M. A., Kudrynskyi, Z. R., Mazumder, D., Greener, J. D., Makarovsky, O., Mellor, C. J., …Patanè, A. (2019). Photo-quantum Hall effect and light-induced charge transfer at the interface of graphene/InSe heterostructures. Advanced Functional Materials, 29(3), Article 1805491. https://doi.org/10.1002/adfm.201805491

The transfer of electronic charge across the interface of two van der Waals crystals can underpin the operation of a new class of functional devices. Amongst van der Waals semiconductors, an exciting and rapidly growing development involves the “post... Read More about Photo-quantum Hall effect and light-induced charge transfer at the interface of graphene/InSe heterostructures.

Photoelastic properties of zinc-blende (AlGa)N in the UV: picosecond ultrasonic studies (2018)
Journal Article
Whale, J., Akimov, A. V., Novikov, S. V., Mellor, C. J., & Kent, A. J. (2018). Photoelastic properties of zinc-blende (AlGa)N in the UV: picosecond ultrasonic studies. Physical Review Materials, 2(3), https://doi.org/10.1103/PhysRevMaterials.2.034606

Picosecond ultrasonics was used to study the photoelastic properties of zinc-blende (cubic) c-AlₓGa₁₋ₓN with x around 0.5 The velocities for longitudinal sound in the alloys were measured using ultrafast UV pump-probe experiments with (Al... Read More about Photoelastic properties of zinc-blende (AlGa)N in the UV: picosecond ultrasonic studies.

Magnetic field tunable vortex diode made of YBa2Cu3O7−δ Josephson junction asymmetrical arrays (2017)
Journal Article
Chesca, B., John, D., Pollett, R., Gaifullin, M., Cox, J., Mellor, C., & Savelev, S. (in press). Magnetic field tunable vortex diode made of YBa2Cu3O7−δ Josephson junction asymmetrical arrays. Applied Physics Letters, 111(6), https://doi.org/10.1063/1.4997741

Several Josephson ratchets designed as asymmetrically structured parallel-series arrays of Josephson junctions made of YBa2Cu3O7−δ have been fabricated. From the current-voltage characteristics measured for various values of applied magnetic field, B... Read More about Magnetic field tunable vortex diode made of YBa2Cu3O7−δ Josephson junction asymmetrical arrays.

Design, fabrication and demonstration of a 1x20 multimode interference splitter for parallel biosensing applications (2016)
Journal Article
Najeeb, N., Zhang, Y., Mellor, C. J., & Benson, T. M. (2016). Design, fabrication and demonstration of a 1x20 multimode interference splitter for parallel biosensing applications. Journal of Physics: Conference Series, 679(1), https://doi.org/10.1088/1742-6596/679/1/012027

This paper presents the experimental achievement of a silicon-on-insulator 1x20 MMI splitter andsimulation evaluations of the TE-like and TM-like mode MMI splitters for parallel biosensing applications. Device fabrication technology and optical chara... Read More about Design, fabrication and demonstration of a 1x20 multimode interference splitter for parallel biosensing applications.

High Broad-Band Photoresponsivity of Mechanically Formed InSe-Graphene van der Waals Heterostructures (2015)
Journal Article
Mudd, G. W., Svatek, S. A., Hague, L., Makarovsky, O., Kudrynskyi, Z. R., Mellor, C. J., …Patanè, A. (2015). High Broad-Band Photoresponsivity of Mechanically Formed InSe-Graphene van der Waals Heterostructures. Advanced Materials, 27(25), 3760-3766. https://doi.org/10.1002/adma.201500889

We exploit the broad-band transparency of graphene and the favorable band line up of graphene with van der Waals InSe crystals to create new functional heterostructures and high-performance photodetectors. The InSe-graphene heterostructure exhibits a... Read More about High Broad-Band Photoresponsivity of Mechanically Formed InSe-Graphene van der Waals Heterostructures.