Skip to main content

Research Repository

Advanced Search

Outputs (8)

Preliminary Design of a GNSS Interference Mapping CubeSat Mission: JamSail (2024)
Journal Article
Cormier, L., Yousif, T., Thompson, S., Arcia Gil, A., Pushparaj, N., Blunt, P., & Cappelletti, C. (2024). Preliminary Design of a GNSS Interference Mapping CubeSat Mission: JamSail. Aerospace, 11(11), Article 901. https://doi.org/10.3390/aerospace11110901

The JamSail mission is an educational CubeSat aiming to design, develop, and demonstrate two new technologies on a small satellite, tentatively scheduled for launch no earlier than 2026. When launched, JamSail will demonstrate the functionality of tw... Read More about Preliminary Design of a GNSS Interference Mapping CubeSat Mission: JamSail.

Optimization of MMX relative quasi-satellite transfer trajectories using primer vector theory (2024)
Journal Article
Pushparaj, N., Baresi, N., & Kawakatsu, Y. (2024). Optimization of MMX relative quasi-satellite transfer trajectories using primer vector theory. Acta Astronautica, 225, 390-401. https://doi.org/10.1016/j.actaastro.2024.09.031

Quasi-satellite orbits (QSO) are stable retrograde parking orbits around Phobos that are currently being considered for JAXA’s upcoming robotic sample return mission Maritan Moons Exploration (MMX). During the proximity operations o... Read More about Optimization of MMX relative quasi-satellite transfer trajectories using primer vector theory.

Breaking the Cycle: Novel Capture Mechanisms for Active Space Debris Removal (2023)
Presentation / Conference Contribution
Taggart, A., Harris, J., Pushparaj, N., & Cappelletti, C. (2023, October). Breaking the Cycle: Novel Capture Mechanisms for Active Space Debris Removal. Presented at 74th International Astronautical Congress. Symposium A6. 21st IAA SYMPOSIUM ON SPACE DEBRIS, Baku, Azerbaijan

Since the launch of Sputnik 1 in 1957, over 6000 rockets and more than 11,300 satellites have been launched into space, resulting in a high number of artificial space debris in orbit around Earth. Of this debris, there are over one million objects be... Read More about Breaking the Cycle: Novel Capture Mechanisms for Active Space Debris Removal.

Frequent Deep-Space Access Strategy for Venus Aeronomic Exploration Mission using Earth-Synchronous Orbits (2023)
Presentation / Conference Contribution
Ito, D., Pushparaj, N., & Kawakatsu, Y. (2023, October). Frequent Deep-Space Access Strategy for Venus Aeronomic Exploration Mission using Earth-Synchronous Orbits. Presented at 74th International Astronautical Congress. Symposium B4. 30th IAA SYMPOSIUM ON SMALL SATELLITE MISSIONS, Baku, Azerbaijan

Geostationary transfer orbits (GTO) are earth-centric orbits widely used for kick-stage operations of satellites for deep space exploration missions. A rideshare spacecraft parked or deployed in GTOs usually requires minimal transfer cost compared to... Read More about Frequent Deep-Space Access Strategy for Venus Aeronomic Exploration Mission using Earth-Synchronous Orbits.

Quasi-solar Synchronous Orbit around the Moon based on Spatial Distant Retrograde Orbits (2023)
Presentation / Conference Contribution
Peng, L., Liang, Y., Pushparaj, N., & Shi, P. (2023, October). Quasi-solar Synchronous Orbit around the Moon based on Spatial Distant Retrograde Orbits. Presented at 74th International Astronautical Congress. Symposium A5. 26th IAA SYMPOSIUM ON HUMAN EXPLORATION OF THE SOLAR SYSTEM, Baku, Azerbaijan

The last several decades have witnessed the rapid development of lunar exploration, promoting researches on various types of lunar orbits including Distant Retrograde Orbits (abbr. DRO) that are feasible for orbiting tasks due to their stability. Man... Read More about Quasi-solar Synchronous Orbit around the Moon based on Spatial Distant Retrograde Orbits.

Optimal Transfer Trajectories between Relative Quasi-Satellite Orbits (2023)
Presentation / Conference Contribution
Pushparaj, N., Hiraiwa, N., & Bando, M. (2023, October). Optimal Transfer Trajectories between Relative Quasi-Satellite Orbits. Presented at 74th International Astronautical Congress, Baku, Azerbaijan

Quasi-satellite orbits (QSOs) are stable retrograde orbits in the restricted three-body problem that have gained attention as a viable candidate for future deep-space missions towards remote planetary satellites. Several mission design proposal uses... Read More about Optimal Transfer Trajectories between Relative Quasi-Satellite Orbits.

Design and analysis of stable differentiator-predictor (2020)
Journal Article
Wang, X. (2022). Design and analysis of stable differentiator-predictor. International Journal of Control, 95(5), 1228-1250. https://doi.org/10.1080/00207179.2020.1847326

In this paper, the phase lead by the general phase-lead compensator is analysed, and a criterion of its parameters selection is proposed. In order to get the relatively large time-interval prediction for stochastic signal, two types of differentiator... Read More about Design and analysis of stable differentiator-predictor.

Identification of typical eco-hydrological behaviours using InSAR allows landscape-scale mapping of peatland condition
Preprint / Working Paper
Bradley, A. V., Andersen, R., Marshall, C., Sowter, A., & Large, D. J. Identification of typical eco-hydrological behaviours using InSAR allows landscape-scale mapping of peatland condition

Better tools for rapid and reliable assessment of global peatland extent and condition are urgently needed to support action to prevent their further decline. Peatland surface motion is a response to changes in the water and gas content of a peat bod... Read More about Identification of typical eco-hydrological behaviours using InSAR allows landscape-scale mapping of peatland condition.