Skip to main content

Research Repository

Advanced Search

Professor DAVID NEEDHAM's Outputs (5)

Low-Density Lipoprotein Pathway Is a Ubiquitous Metabolic Vulnerability in High Grade Glioma Amenable for Nanotherapeutic Delivery (2023)
Journal Article
Adekeye, A. O., Needham, D., & Rahman, R. (2023). Low-Density Lipoprotein Pathway Is a Ubiquitous Metabolic Vulnerability in High Grade Glioma Amenable for Nanotherapeutic Delivery. Pharmaceutics, 15(2), Article 599. https://doi.org/10.3390/pharmaceutics15020599

Metabolic reprogramming, through increased uptake of cholesterol in the form of low-density lipoproteins (LDL), is one way by which cancer cells, including high grade gliomas (HGG), maintain their rapid growth. In this study, we determined LDL recept... Read More about Low-Density Lipoprotein Pathway Is a Ubiquitous Metabolic Vulnerability in High Grade Glioma Amenable for Nanotherapeutic Delivery.

The pH Dependence of Niclosamide Solubility, Dissolution, and Morphology: Motivation for Potentially Universal Mucin-Penetrating Nasal and Throat Sprays for COVID19, its Variants and other Viral Infections (2021)
Journal Article
Needham, D. (2022). The pH Dependence of Niclosamide Solubility, Dissolution, and Morphology: Motivation for Potentially Universal Mucin-Penetrating Nasal and Throat Sprays for COVID19, its Variants and other Viral Infections. Pharmaceutical Research, 39(1), 115-141. https://doi.org/10.1007/s11095-021-03112-x

Motivation: With the coronavirus pandemic still raging, prophylactic-nasal and early-treatment throat-sprays could help prevent infection and reduce viral load. Niclosamide has the potential to treat a broad-range of viral infections if local bioavai... Read More about The pH Dependence of Niclosamide Solubility, Dissolution, and Morphology: Motivation for Potentially Universal Mucin-Penetrating Nasal and Throat Sprays for COVID19, its Variants and other Viral Infections.

Designing topographically textured microparticles for induction and modulation of osteogenesis in mesenchymal stem cell engineering (2020)
Journal Article
Amer, M. H., Alvarez-Paino, M., McLaren, J., Pappalardo, F., Trujillo, S., Wong, J. Q., Shrestha, S., Abdelrazig, S., Stevens, L. A., Lee, J. B., Kim, D. H., González-García, C., Needham, D., Salmerón-Sánchez, M., Shakesheff, K. M., Alexander, M. R., Alexander, C., & Rose, F. R. (2021). Designing topographically textured microparticles for induction and modulation of osteogenesis in mesenchymal stem cell engineering. Biomaterials, 266, Article 120450. https://doi.org/10.1016/j.biomaterials.2020.120450

© 2020 The Authors Mesenchymal stem cells are the focus of intense research in bone development and regeneration. The potential of microparticles as modulating moieties of osteogenic response by utilizing their architectural features is demonstrated... Read More about Designing topographically textured microparticles for induction and modulation of osteogenesis in mesenchymal stem cell engineering.

Preclinical Testing of a Novel Niclosamide Stearate Prodrug Therapeutic (NSPT) shows efficacy against Osteosarcoma (2020)
Journal Article
Reddy, G. B., Kerr, D. L., Spasojevic, I., Tovmasyan, A., Hsu, D. S., Brigman, B. E., Somarelli, J. A., Needham, D., & Eward, W. C. (2020). Preclinical Testing of a Novel Niclosamide Stearate Prodrug Therapeutic (NSPT) shows efficacy against Osteosarcoma. Molecular Cancer Therapeutics, 19(7), 1448-1461. https://doi.org/10.1158/1535-7163.mct-19-0689

Therapeutic advances for osteosarcoma (OS) have stagnated over the past several decades, leading to an unmet clinical need for patients. The purpose of this study was to develop a novel therapy for OS by reformulating and validating niclosamide, an e... Read More about Preclinical Testing of a Novel Niclosamide Stearate Prodrug Therapeutic (NSPT) shows efficacy against Osteosarcoma.

Polymer microparticles with defined surface chemistry and topography mediate the formation of stem cell aggregates and cardiomyocyte function (2019)
Journal Article
Alvarez-Paino, M., Amer, M. H., Nasir, A., Cuzzucoli Crucitti, V., Thorpe, J., Burroughs, L., Needham, D., Denning, C., Alexander, M. R., Alexander, C., & Rose, F. (2019). Polymer microparticles with defined surface chemistry and topography mediate the formation of stem cell aggregates and cardiomyocyte function. ACS Applied Materials and Interfaces, 11(38), 34560-34574. https://doi.org/10.1021/acsami.9b04769

Surface-functionalized microparticles are relevant to fields spanning engineering and biomedicine, with uses ranging from cell culture to advanced cell delivery. Varying topographies of biomaterial surfaces are also being investigated as mediators of... Read More about Polymer microparticles with defined surface chemistry and topography mediate the formation of stem cell aggregates and cardiomyocyte function.