Skip to main content

Research Repository

Advanced Search

SANLIANG LING's Outputs (46)

A density functional theory study of defective and doped structures of MgB2 and their interaction with hydrogen (2024)
Journal Article
Kuganathan, N., Dornheim, M., M. Grant, D., & Ling, S. (2024). A density functional theory study of defective and doped structures of MgB2 and their interaction with hydrogen. Materials Chemistry and Physics, 324, Article 129677. https://doi.org/10.1016/j.matchemphys.2024.129677

The LiBH4+MgH2 system exhibits promising potential for solid-state hydrogen storage, yet the sluggish rehydrogenation of MgB2 poses a significant challenge. In this study, we utilize density functional theory (DFT) simulations to investigate the ener... Read More about A density functional theory study of defective and doped structures of MgB2 and their interaction with hydrogen.

Destabilizing high-capacity high entropy hydrides via earth abundant substitutions: from predictions to experimental validation (2024)
Journal Article
Agafonov, A., Pineda-Romero, N., Witman, M., Nassif, V., Vaughan, G. B., Lei, L., Ling, S., Grant, D. M., Dornheim, M., Allendorf, M., Stavila, V., & Zlotea, C. (2024). Destabilizing high-capacity high entropy hydrides via earth abundant substitutions: from predictions to experimental validation. Acta Materialia, 276, Article 120086. https://doi.org/10.1016/j.actamat.2024.120086

The vast chemical space of high entropy alloys (HEAs) makes trial-and-error experimental approaches for materials discovery intractable and often necessitates data-driven and/or first principles computational insights to successfully target materials... Read More about Destabilizing high-capacity high entropy hydrides via earth abundant substitutions: from predictions to experimental validation.

Modulated Self-Assembly of Catalytically Active Metal–Organic Nanosheets Containing Zr6 Clusters and Dicarboxylate Ligands (2024)
Journal Article
Prasad, R. R. R., Boyadjieva, S. S., Zhou, G., Tan, J., Firth, F. C. N., Ling, S., …Forgan, R. S. (2024). Modulated Self-Assembly of Catalytically Active Metal–Organic Nanosheets Containing Zr6 Clusters and Dicarboxylate Ligands. ACS Applied Materials and Interfaces, 16(14), 17812–17820. https://doi.org/10.1021/acsami.4c00604

Two-dimensional metal–organic nanosheets (MONs) have emerged as attractive alternatives to their three-dimensional metal–organic framework (MOF) counterparts for heterogeneous catalysis due to their greater external surface areas and higher accessibi... Read More about Modulated Self-Assembly of Catalytically Active Metal–Organic Nanosheets Containing Zr6 Clusters and Dicarboxylate Ligands.

Phase Diagrams of Alloys and Their Hydrides via On-Lattice Graph Neural Networks and Limited Training Data (2024)
Journal Article
Witman, M. D., Bartelt, N. C., Ling, S., Guan, P.-W., Way, L., Allendorf, M. D., & Stavila, V. (2024). Phase Diagrams of Alloys and Their Hydrides via On-Lattice Graph Neural Networks and Limited Training Data. Journal of Physical Chemistry Letters, 15(5), 1500-1506. https://doi.org/10.1021/acs.jpclett.3c03369

Efficient prediction of sampling-intensive thermodynamic properties is needed to evaluate material performance and permit high-throughput materials modeling for a diverse array of technology applications. To alleviate the prohibitive computational ex... Read More about Phase Diagrams of Alloys and Their Hydrides via On-Lattice Graph Neural Networks and Limited Training Data.

A fast ceramic mixed OH−/H+ ionic conductor for low temperature fuel cells (2024)
Journal Article
Zou, P., Iuga, D., Ling, S., Brown, A. J., Chen, S., Zhang, M., …Tao, S. (2024). A fast ceramic mixed OH−/H+ ionic conductor for low temperature fuel cells. Nature Communications, 15(1), Article 909. https://doi.org/10.1038/s41467-024-45060-1

Low temperature ionic conducting materials such as OH− and H+ ionic conductors are important electrolytes for electrochemical devices. Here we show the discovery of mixed OH−/H+ conduction in ceramic materials. SrZr0.8Y0.2O3-δ exhibits a high ionic c... Read More about A fast ceramic mixed OH−/H+ ionic conductor for low temperature fuel cells.

Stoichiometry and annealing condition on hydrogen capacity of TiCr2-x AB2 alloys (2023)
Journal Article
McGrath, A. J., Wadge, M. D., Adams, M., Manickam, K., Ling, S., Walker, G. S., & Grant, D. M. (2024). Stoichiometry and annealing condition on hydrogen capacity of TiCr2-x AB2 alloys. International Journal of Hydrogen Energy, 53, 582-591. https://doi.org/10.1016/j.ijhydene.2023.12.062

This study presents the effect of stoichiometry and annealing condition on Ti–Cr AB2-type hydrogen storage alloys. Prior to annealing the majority phase of the as-cast alloys was the C14 Laves phase, with separate Ti and Cr phases. Annealing treatmen... Read More about Stoichiometry and annealing condition on hydrogen capacity of TiCr2-x AB2 alloys.

High-pressure behavior of the magnetic van der Waals molecular framework Ni(NCS) 2 (2023)
Journal Article
Geers, M., Jarvis, D. M., Liu, C., Saxena, S. S., Pitcairn, J., Myatt, E., …Cliffe, M. J. (2023). High-pressure behavior of the magnetic van der Waals molecular framework Ni(NCS) 2. Physical Review B, 108(14), Article 144439. https://doi.org/10.1103/PhysRevB.108.144439

Two-dimensional materials offer a unique range of magnetic, electronic, and mechanical properties which can be controlled by external stimuli. Pressure is a particularly important stimulus, as it can be achieved readily and can produce large response... Read More about High-pressure behavior of the magnetic van der Waals molecular framework Ni(NCS) 2.

Towards Pareto optimal high entropy hydrides via data-driven materials discovery (2023)
Journal Article
Witman, M. D., Ling, S., Wadge, M., Bouzidi, A., Pineda-Romero, N., Clulow, R., …Stavila, V. (2023). Towards Pareto optimal high entropy hydrides via data-driven materials discovery. Journal of Materials Chemistry A, 11(29), 15878-15888. https://doi.org/10.1039/d3ta02323k

The ability to rapidly screen material performance in the vast space of high entropy alloys is of critical importance to efficiently identify optimal hydride candidates for various use cases. Given the prohibitive complexity of first principles simul... Read More about Towards Pareto optimal high entropy hydrides via data-driven materials discovery.

Modulated self-assembly of hcp topology MOFs of Zr/Hf and the extended 4,4′-(ethyne-1,2-diyl)dibenzoate linker (2023)
Journal Article
Boyadjieva, S. S., Firth, F. C., Alizadeh Kiapi, M. R., Fairen-Jimenez, D., Ling, S., Cliffe, M. J., & Forgan, R. S. (2023). Modulated self-assembly of hcp topology MOFs of Zr/Hf and the extended 4,4′-(ethyne-1,2-diyl)dibenzoate linker. CrystEngComm, 25(14), 2119-2124. https://doi.org/10.1039/d2ce01529c

Careful control of synthetic conditions can enhance the structural diversity of metal–organic frameworks (MOFs) within individual metal-linker combinations. Herein, we show that hcp topology MOFs of both Zr(iv) and Hf(iv), linked by the extended (eth... Read More about Modulated self-assembly of hcp topology MOFs of Zr/Hf and the extended 4,4′-(ethyne-1,2-diyl)dibenzoate linker.

Non-collinear magnetism in the post-perovskite thiocyanate frameworks CsM(NCS)3 (2023)
Journal Article
Geers, M., Lee, J. Y., Ling, S., Fabelo, O., Cañadillas-Delgado, L., & Cliffe, M. J. (2023). Non-collinear magnetism in the post-perovskite thiocyanate frameworks CsM(NCS)3. Chemical Science, 14(13), 3531-3540. https://doi.org/10.1039/d2sc06861c

AMX3 compounds are structurally diverse, a notable example being the post-perovskite structure which adopts a two-dimensional framework with corner- and edge-sharing octahedra. Few molecular post-perovskites are known and of these, none have reported... Read More about Non-collinear magnetism in the post-perovskite thiocyanate frameworks CsM(NCS)3.

Microporous metallic scaffolds supported liquid infused icephobic construction (2022)
Journal Article
Wu, M., Wang, J., Ling, S., Wheatley, R., & Hou, X. (2023). Microporous metallic scaffolds supported liquid infused icephobic construction. Journal of Colloid and Interface Science, 634, 369-378. https://doi.org/10.1016/j.jcis.2022.12.034

Hypothesis: Ice accretion on component surfaces often causes severe impacts or accidents. Liquid-infused surfaces (LIS) have drawn much attention as icephobic materials for ice mitigation in recent years due to their outstanding icephobicity. However... Read More about Microporous metallic scaffolds supported liquid infused icephobic construction.

Cage Molecules Stabilize Lead Halide Perovskite Thin Films (2022)
Journal Article
Sun, S., Liu, M., Thapa, J., Hartono, N. T. P., Zhao, Y., He, D., …Buonassisi, T. (2022). Cage Molecules Stabilize Lead Halide Perovskite Thin Films. Chemistry of Materials, 34(21), 9384–9391. https://doi.org/10.1021/acs.chemmater.2c01502

The environmental stability of hybrid organic-inorganic perovskite (HOIP) materials needs to increase, to enable their widespread adoption in thin-film solar and optoelectronic devices. Molecular additives emerged recently as an effective strategy to... Read More about Cage Molecules Stabilize Lead Halide Perovskite Thin Films.

Fundamentals of hydrogen storage in nanoporous materials (2022)
Journal Article
Zhang, L., Allendorf, M. D., Balderas-Xicohténcatl, R., Broom, D. P., Fanourgakis, G. S., Froudakis, G. E., …Hirscher, M. (2022). Fundamentals of hydrogen storage in nanoporous materials. Progress in Energy, 4(4), Article 042013. https://doi.org/10.1088/2516-1083/ac8d44

Physisorption of hydrogen in nanoporous materials offers an efficient and competitive alternative for hydrogen storage. At low temperatures (e.g. 77 K) and moderate pressures (below 100 bar) molecular H2 adsorbs reversibly, with very fast kinetics, a... Read More about Fundamentals of hydrogen storage in nanoporous materials.

Hydrogen-Induced Conversion of SnS2 into SnS or Sn: A Route to Create SnS2/SnS Heterostructures (2022)
Journal Article
Patanè, A., Felton, J., Blundo, E., Kudrynskyi, Z., Ling, S., Bradford, J., …Patane, A. (2022). Hydrogen-Induced Conversion of SnS2 into SnS or Sn: A Route to Create SnS2/SnS Heterostructures. Small, 18(33), Article 2202661. https://doi.org/10.1002/smll.202202661

The family of van der Waals (vdW) materials is large and diverse with applications ranging from electronics and optoelectronics to catalysis and chemical storage. However, despite intensive research, there remains significant knowledge-gaps pertainin... Read More about Hydrogen-Induced Conversion of SnS2 into SnS or Sn: A Route to Create SnS2/SnS Heterostructures.

Magnesium- and intermetallic alloys-based hydrides for energy storage: Modelling, synthesis and properties (2022)
Journal Article
Pasquini, L., Sakaki, K., Akiba, E., Allendorf, M. D., Alvares, E., Ares, J. R., …Yartys, V. A. (2022). Magnesium- and intermetallic alloys-based hydrides for energy storage: Modelling, synthesis and properties. Progress in Energy, 4(3), Article 032007. https://doi.org/10.1088/2516-1083/ac7190

Hydrides based on magnesium and intermetallic compounds provide a viable solution to the challenge of energy storage from renewable sources, thanks to their ability to absorb and desorb hydrogen in a reversible way with a proper tuning of pressure an... Read More about Magnesium- and intermetallic alloys-based hydrides for energy storage: Modelling, synthesis and properties.

Docking rings in a solid: reversible assembling of pseudorotaxanes inside a zirconium metal–organic framework (2022)
Journal Article
Li, X., Xie, J., Du, Z., Jiang, L., Li, G., Ling, S., & Zhu, K. (2022). Docking rings in a solid: reversible assembling of pseudorotaxanes inside a zirconium metal–organic framework. Chemical Science, 13(21), 6291-6296. https://doi.org/10.1039/d2sc01497a

An unprecedented zirconium metal–organic framework featuring a T-shaped benzimidazole strut was constructed and employed as a sponge-like material for selective absorption of macrocyclic guests. The neutral benzimidazole domain of the as-synthesized... Read More about Docking rings in a solid: reversible assembling of pseudorotaxanes inside a zirconium metal–organic framework.

Supramolecular Proton Conductors Self-Assembled by Organic Cages (2022)
Journal Article
Yang, Z., Zhang, N., Lei, L., Yu, C., Ding, J., Li, P., …Zhang, S. (2022). Supramolecular Proton Conductors Self-Assembled by Organic Cages. JACS Au, 2(4), 819-826. https://doi.org/10.1021/jacsau.1c00556

Proton conduction is vital for living systems to execute various physiological activities. The understanding of its mechanism is also essential for the development of state-of-the-art applications, including fuel-cell technology. We herein present a... Read More about Supramolecular Proton Conductors Self-Assembled by Organic Cages.

A high-throughput, solvent free method for dispersing metal atoms directly onto supports (2021)
Journal Article
Kohlrausch, E. C., Centurion, H. A., Lodge, R. W., Luo, X., Slater, T., Santos, M. J. L., …Alves Fernandes, J. (2021). A high-throughput, solvent free method for dispersing metal atoms directly onto supports. Journal of Materials Chemistry A, 9(47), 26676-26679. https://doi.org/10.1039/d1ta08372d

Atomically-dispersed metal catalysts (ADMCs) on surfaces have demonstrated high activity and selectivity in many catalytic reactions. However, dispersing and stabilising individual atoms in support materials in an atom/energy-efficient scalable way s... Read More about A high-throughput, solvent free method for dispersing metal atoms directly onto supports.

Exploring and expanding the Fe-terephthalate metal-organic framework phase space by coordination and oxidation modulation (2021)
Journal Article
Bara, D., Meekel, E. G., Pakamorė, I., Wilson, C., Ling, S., & Forgan, R. S. (2021). Exploring and expanding the Fe-terephthalate metal-organic framework phase space by coordination and oxidation modulation. Materials Horizons, 8(12), 3377-3386. https://doi.org/10.1039/d1mh01663f

The synthesis of phase pure metal-organic frameworks (MOFs)-network solids of metal clusters connected by organic linkers-is often complicated by the possibility of forming multiple diverse phases from one metal-ligand combination. For example, there... Read More about Exploring and expanding the Fe-terephthalate metal-organic framework phase space by coordination and oxidation modulation.

Data-Driven Discovery and Synthesis of High Entropy Alloy Hydrides with Targeted Thermodynamic Stability (2021)
Journal Article
Witman, M., Ek, G., Ling, S., Chames, J., Agarwal, S., Wong, J., …Stavila, V. (2021). Data-Driven Discovery and Synthesis of High Entropy Alloy Hydrides with Targeted Thermodynamic Stability. Chemistry of Materials, 33(11), 4067–4076. https://doi.org/10.1021/acs.chemmater.1c00647

Solid-state hydrogen storage materials that are optimized for specific use cases could be a crucial facilitator of the hydrogen economy transition. Yet, the discovery of novel hydriding materials has historically been a manual process driven by chemi... Read More about Data-Driven Discovery and Synthesis of High Entropy Alloy Hydrides with Targeted Thermodynamic Stability.

Tetraphenylethylene‐Based Multicomponent Emissive Metallacages as Solid‐State Fluorescent Materials (2021)
Journal Article
Mu, C., Zhang, Z., Hou, Y., Liu, H., Ma, L., Li, X., …Zhang, M. (2021). Tetraphenylethylene‐Based Multicomponent Emissive Metallacages as Solid‐State Fluorescent Materials. Angewandte Chemie, 60(22), 12293-12297. https://doi.org/10.1002/anie.202100463

Tetraphenylethylene‐based multicomponent emissive metallacages with high fluorescence quantum yield and good processability were prepared. These metallacages were further utilized as coatings of a blue light‐emitting bulb to prepare white‐light emitt... Read More about Tetraphenylethylene‐Based Multicomponent Emissive Metallacages as Solid‐State Fluorescent Materials.

Controlling multiple orderings in metal thiocyanate molecular perovskites Ax{Ni[Bi(SCN)6]} (2021)
Journal Article
Lee, J. Y., Ling, S., Argent, S., Senn, M., Cañadillas-Delgado, L., & Cliffe, M. (2021). Controlling multiple orderings in metal thiocyanate molecular perovskites Ax{Ni[Bi(SCN)6]}. Chemical Science, 12(10), 3516-3525. https://doi.org/10.1039/d0sc06619b

We report four new A-site vacancy ordered thiocyanate double double perovskites, A1–x{Ni[Bi(SCN)6](1–x)/3}, A = K+, NH4+, CH3(NH3)+ (MeNH3+) and C(NH2)3+ (Gua+), including the first examples of thiocyanate perovskites containing organic A-site cation... Read More about Controlling multiple orderings in metal thiocyanate molecular perovskites Ax{Ni[Bi(SCN)6]}.

General synthesis of single atom electrocatalysts: via a facile condensation-carbonization process (2020)
Journal Article
Chen, W., Luo, X., Slater, T. . J., Ling, S., Zhou, Y., Bao, R., …Shen, Y. (2020). General synthesis of single atom electrocatalysts: via a facile condensation-carbonization process. Journal of Materials Chemistry A, 8(48), 25959-25969. https://doi.org/10.1039/d0ta08115a

The general and cost-effective synthesis of single atom electrocatalysts (SAECs) still remains a great challenge. Herein, we report a general synthetic protocol for the synthesis of SAECs via a simple condensation-carbonization process, in which furf... Read More about General synthesis of single atom electrocatalysts: via a facile condensation-carbonization process.

Highly Emissive Perylene Diimide-Based Metallacages and Their Host–Guest Chemistry for Information Encryption (2020)
Journal Article
Hou, Y., Zhang, Z., Lu, S., Yuan, J., Zhu, Q., Chen, W.-P., …Zhang, M. (2020). Highly Emissive Perylene Diimide-Based Metallacages and Their Host–Guest Chemistry for Information Encryption. Journal of the American Chemical Society, 142(44), 18763–18768. https://doi.org/10.1021/jacs.0c09904

Here we report two highly emissive perylene diimide (PDI)-based metallacages and explore their complexation with polycyclic aromatic hydrocarbons, such as pyrene, triphenylene, and perylene. The fluorescence quantum yields of metallacages exceed 90%... Read More about Highly Emissive Perylene Diimide-Based Metallacages and Their Host–Guest Chemistry for Information Encryption.

Design principles for the ultimate gas deliverable capacity material: nonporous to porous deformations without volume change (2020)
Journal Article
Witman, M., Ling, S., Stavila, V., Wijeratne, P., Furukawa, H., & Allendorf, M. D. (2020). Design principles for the ultimate gas deliverable capacity material: nonporous to porous deformations without volume change. Molecular Systems Design and Engineering, 5(9), 1491-1503. https://doi.org/10.1039/d0me00122h

Understanding the fundamental limits of gas deliverable capacity in porous materials is of critical importance as it informs whether technical targets (e.g., for on-board vehicular storage) are feasible. High-throughput screening studies of rigid mat... Read More about Design principles for the ultimate gas deliverable capacity material: nonporous to porous deformations without volume change.

Hemoglobin-derived Fe-Nx-S species supported by bamboo-shaped carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction (2020)
Journal Article
Chen, W., Luo, X., Ling, S., Zhou, Y., Shen, B., Slater, T. J., …Shen, Y. (2020). Hemoglobin-derived Fe-Nx-S species supported by bamboo-shaped carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. Carbon, 168, 588-596. https://doi.org/10.1016/j.carbon.2020.06.064

Herein, we report a facile route to synthesize isolated single iron atoms on nitrogen-sulfur-codoped carbon matrix via a direct pyrolysis process in which hemoglobin, a by-product of the meat industry, was utilized as a precursor for iron, nitrogen a... Read More about Hemoglobin-derived Fe-Nx-S species supported by bamboo-shaped carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction.

The Interaction of Hydrogen with the van der Waals Crystal γ-InSe (2020)
Journal Article
Felton, J., Blundo, E., Ling, S., Glover, J., Kudrynskyi, Z. R., Makarovsky, O., …Patané, A. (2020). The Interaction of Hydrogen with the van der Waals Crystal γ-InSe. Molecules, 25(11), Article 2526. https://doi.org/10.3390/molecules25112526

The emergence of the hydrogen economy requires development in the storage, generation and sensing of hydrogen. The indium selenide (γ-InSe) van der Waals (vdW) crystal shows promise for technologies in all three of these areas. For these applications... Read More about The Interaction of Hydrogen with the van der Waals Crystal γ-InSe.

Emissive Platinum(II) Cages with Reverse Fluorescence Resonance Energy Transfer for Multiple Sensing (2020)
Journal Article
Zhang, Z., Zhao, Z., Wu, L., Lu, S., Ling, S., Li, G., …Zhang, M. (2020). Emissive Platinum(II) Cages with Reverse Fluorescence Resonance Energy Transfer for Multiple Sensing. Journal of the American Chemical Society, 142(5), 2592-2600. https://doi.org/10.1021/jacs.9b12689

It is quite challenging to realize fluorescence resonance energy transfer (FRET) between two chromophores with specific positions and directions. Herein, through the self-assembly of two carefully selected fluorescent ligands via metal-coordination i... Read More about Emissive Platinum(II) Cages with Reverse Fluorescence Resonance Energy Transfer for Multiple Sensing.

Extracting an Empirical Intermetallic Hydride Design Principle from Limited Data via Interpretable Machine Learning (2019)
Journal Article
Witman, M., Ling, S., Grant, D. M., Walker, G. S., Agarwal, S., Stavila, V., & Allendorf, M. D. (2020). Extracting an Empirical Intermetallic Hydride Design Principle from Limited Data via Interpretable Machine Learning. Journal of Physical Chemistry Letters, 11(1), 40-47. https://doi.org/10.1021/acs.jpclett.9b02971

An open question in the metal hydride community is whether there are simple, physics-based design rules that dictate the thermodynamic properties of these materials across the variety of structures and chemistry they can exhibit. While black box mach... Read More about Extracting an Empirical Intermetallic Hydride Design Principle from Limited Data via Interpretable Machine Learning.

Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal–Organic Framework Database: CoRE MOF 2019 (2019)
Journal Article
Chung, Y. G., Haldoupis, E., Bucior, B. J., Haranczyk, M., Lee, S., Zhang, H., …Snurr, R. Q. (2019). Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal–Organic Framework Database: CoRE MOF 2019. Journal of Chemical and Engineering Data, 64(12), 5985-5998. https://doi.org/10.1021/acs.jced.9b00835

Over 14 000 porous, three-dimensional metal–organic framework structures are compiled and analyzed as a part of an update to the Computation-Ready, Experimental Metal–Organic Framework Database (CoRE MOF Database). The updated database includes addit... Read More about Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal–Organic Framework Database: CoRE MOF 2019.

Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution (2019)
Journal Article
Liu, L., Chen, Z., Wang, J., Zhang, D., Zhu, Y., Ling, S., …Han, Y. (2019). Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nature Chemistry, 11(7), 622-628. https://doi.org/10.1038/s41557-019-0263-4

© 2019, The Author(s), under exclusive licence to Springer Nature Limited. Defect engineering of metal–organic frameworks (MOFs) offers promising opportunities for tailoring their properties to specific functions and applications. However, determinin... Read More about Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution.

Kinetic Control of Interpenetration in Fe–Biphenyl-4,4′-dicarboxylate Metal–Organic Frameworks by Coordination and Oxidation Modulation (2019)
Journal Article
Bara, D., Wilson, C., Mörtel, M., Khusniyarov, M. M., Ling, S., Slater, B., …Forgan, R. S. (2019). Kinetic Control of Interpenetration in Fe–Biphenyl-4,4′-dicarboxylate Metal–Organic Frameworks by Coordination and Oxidation Modulation. Journal of the American Chemical Society, 141(20), 8346-8357. https://doi.org/10.1021/jacs.9b03269

Phase control in the self-assembly of metal–organic frameworks (MOFs) is often a case of trial and error; judicious control over a number of synthetic variables is required to select the desired topology and control features such as interpenetration... Read More about Kinetic Control of Interpenetration in Fe–Biphenyl-4,4′-dicarboxylate Metal–Organic Frameworks by Coordination and Oxidation Modulation.

A and B site doping of a phonon-glass perovskite oxide thermoelectric (2018)
Journal Article
Daniels, L., Ling, S., Savvin, S., Pitcher, M., Dyer, M., Claridge, J., …Rosseinsky, M. (2018). A and B site doping of a phonon-glass perovskite oxide thermoelectric. Journal of Materials Chemistry A, 6(32), 15640-15652. https://doi.org/10.1039/c8ta03739f

By tuning the A site cation size it is possible to control the degree of octahedral distortion and ultimately structural symmetry in the new perovskite solid solution La0.5Na0.5−xKxTiO3, affording a rhombohedral-to-cubic transition as x increases abo... Read More about A and B site doping of a phonon-glass perovskite oxide thermoelectric.

Predicting vapor liquid equilibria using density functional theory: a case study of argon (2018)
Journal Article
Goel, H., Ling, S., Ellis, B. N., Taconi, A., Slater, B., & Rai, N. (2018). Predicting vapor liquid equilibria using density functional theory: a case study of argon. Journal of Chemical Physics, 148(22), Article 224501. https://doi.org/10.1063/1.5025726

Predicting vapor liquid equilibria (VLE) of molecules governed by weak van der Waals (vdW) interactions using the first principles approach is a significant challenge. Due to the poor scaling of the post Hartree-Fock wave function theory with system... Read More about Predicting vapor liquid equilibria using density functional theory: a case study of argon.

Cutting Materials in Half: A Graph Theory Approach for Generating Crystal Surfaces and Its Prediction of 2D Zeolites (2018)
Journal Article
Witman, M., Ling, S., Boyd, P., Barthel, S., Haranczyk, M., Slater, B., & Smit, B. (2018). Cutting Materials in Half: A Graph Theory Approach for Generating Crystal Surfaces and Its Prediction of 2D Zeolites. ACS Central Science, 4(2), 235-245. https://doi.org/10.1021/acscentsci.7b00555

© 2018 American Chemical Society. Scientific interest in two-dimensional (2D) materials, ranging from graphene and other single layer materials to atomically thin crystals, is quickly increasing for a large variety of technological applications. Whil... Read More about Cutting Materials in Half: A Graph Theory Approach for Generating Crystal Surfaces and Its Prediction of 2D Zeolites.

Violations of Löwenstein's rule in zeolites (2017)
Journal Article
Fletcher, R. E., Ling, S., & Slater, B. (2017). Violations of Löwenstein's rule in zeolites. Chemical Science, 8(11), 7483-7491. https://doi.org/10.1039/c7sc02531a

Zeolites, microporous aluminosilicates, are amongst the most widely used catalysts in the petrochemical industry. Zeolite catalytic functionality is influenced by the location of tetrahedral alumina and associated counter-cations in the aluminosilica... Read More about Violations of Löwenstein's rule in zeolites.

Phonon-glass electron-crystal behaviour by A site disorder in n-type thermoelectric oxides (2017)
Journal Article
Daniels, L. M., Savvin, S. N., Pitcher, M. J., Dyer, M. S., Claridge, J. B., Ling, S., …Rosseinsky, M. J. (2017). Phonon-glass electron-crystal behaviour by A site disorder in n-type thermoelectric oxides. Energy and Environmental Science, 10(9), 1917-1922. https://doi.org/10.1039/c7ee01510k

© 2017 The Royal Society of Chemistry. Phonon-glass electron-crystal (PGEC) behaviour is realised in La0.5Na0.5Ti1-xNbxO3 thermoelectric oxides. The vibrational disorder imposed by the presence of both La3+ and Na+ cations on the A site of the ABO3 p... Read More about Phonon-glass electron-crystal behaviour by A site disorder in n-type thermoelectric oxides.

Is high-density amorphous ice simply a “derailed” state along the ice I to ice IV pathway? (2017)
Journal Article
Shephard, J. J., Ling, S., Sosso, G. C., Michaelides, A., Slater, B., & Salzmann, C. G. (2017). Is high-density amorphous ice simply a “derailed” state along the ice I to ice IV pathway?. Journal of Physical Chemistry Letters, 8(7), 1645-1650. https://doi.org/10.1021/acs.jpclett.7b00492

The structural nature of high-density amorphous ice (HDA), which forms through low-temperature pressure-induced amorphization of the “ordinary” ice I, is heavily debated. Clarifying this question is important for understanding not only the complex co... Read More about Is high-density amorphous ice simply a “derailed” state along the ice I to ice IV pathway?.

Different conformations of 2′-deoxycytidine in the gas and solid phases: competition between intra- and intermolecular hydrogen bonds (2016)
Journal Article
Ling, S., & Gutowski, M. (2016). Different conformations of 2′-deoxycytidine in the gas and solid phases: competition between intra- and intermolecular hydrogen bonds. Journal of Physical Chemistry A, 120(41), 8199-8210. https://doi.org/10.1021/acs.jpca.6b09384

Computational results have been reported for 2′-deoxycytidine (dC), its gas phase isomers, tautomers, and their conformers, as well as for the crystalline phase. In addition to the neutral gas phase molecules, we have also considered associated radic... Read More about Different conformations of 2′-deoxycytidine in the gas and solid phases: competition between intra- and intermolecular hydrogen bonds.

Dynamic acidity in defective UiO-66 (2016)
Journal Article
Ling, S., & Slater, B. (2016). Dynamic acidity in defective UiO-66. Chemical Science, 7(7), 4706-4712. https://doi.org/10.1039/c5sc04953a

© The Royal Society of Chemistry 2016. The metal-organic framework (MOF) material UiO-66 has emerged as one of the most promising MOF materials due to its thermal and chemical stability and its potential for catalytic applications. Typically, as-synt... Read More about Dynamic acidity in defective UiO-66.

Unusually large band gap changes in breathing metal–organic framework materials (2015)
Journal Article
Ling, S., & Slater, B. (2015). Unusually large band gap changes in breathing metal–organic framework materials. Journal of Physical Chemistry C, 119(29), 16667-16677. https://doi.org/10.1021/acs.jpcc.5b04050

Many of the potential applications for metal–organic frameworks (MOFs) focus on exploiting their porosity for molecular storage, release, and separation, where the functional behavior is controlled by a subtle balance of host–guest interactions. Typi... Read More about Unusually large band gap changes in breathing metal–organic framework materials.