Skip to main content

Research Repository

Advanced Search

Professor MALCOLM BENNETT's Outputs (57)

Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis (2016)
Journal Article
Porco, S., Pěnčík, A., Rashed, A., Voß, U., Casanova-Sáez, R., Bishopp, A., Golebiowska, A., Bhosale, R., Swarup, R., Swarup, K., Peňáková, P., Novak, O., Staswick, P., Hedden, P., Phillips, A. L., Vissenberg, C., Bennett, M. J., & Ljung, K. (2016). Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis. Proceedings of the National Academy of Sciences, 113(39), 11016-11021. https://doi.org/10.1073/pnas.1604375113

Auxin represents a key signal in plants, regulating almost every aspect of their growth and development. Major breakthroughs have been made dissecting the molecular basis of auxin transport, perception, and response. In contrast, how plants control t... Read More about Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in arabidopsis.

Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3 (2016)
Journal Article
Porco, S., Larrieu, A., Du, Y., Gaudinier, A., Goh, T., Swarup, K., Swarup, R., Kuempers, B., Bishopp, A., Lavenus, J., Casimiro, I., Hill, K., Benkova, E., Fukaki, H., Brady, S. M., Scheres, B., Peret, B., & Bennett, M. J. (2016). Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3. Development, 143(18), 3340-3349. https://doi.org/10.1242/dev.136283

Lateral root primordia (LRP) originate from pericycle stem cells located deep within parental root tissues. LRP emerge through overlying root tissues by inducing auxin-dependent cell separation and hydraulic changes in adjacent cells. The auxin-induc... Read More about Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3.

Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor (2016)
Journal Article
Goh, T., Toyokura, K., Wells, D. M., Swarup, K., Yamamoto, M., Mimura, T., Weijers, D., Fukaki, H., Laplaze, L., Bennett, M. J., & Guyomarc'h, S. (2016). Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor. Development, 143(18), 3363-3371. https://doi.org/10.1242/dev.135319

Lateral root (LR) formation is an important determinant of root system architecture. In Arabidopsis, LRs originate from pericycle cells, which undergo a programme of morphogenesis to generate a new LR meristem. Despite its importance for root meriste... Read More about Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor.

RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis (2016)
Journal Article
Orman-Ligeza, B., Parizot, B., de Rycke, R., Fernandez, A., Himschoot, E., Van Breusegem, F., Bennett, M. J., Périlleux, C., Beeckman, T., & Draye, X. (2016). RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis. Development, 143(18), 3328-3339. https://doi.org/10.1242/dev.136465

Lateral root (LR) emergence represents a highly coordinated process in which the plant hormone auxin plays a central role. Reactive oxygen species (ROS) have been proposed to function as important signals during auxin-regulated LR formation, however... Read More about RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis.

Crosstalk between gibberellin signaling and iron uptake in plants: an Achilles’ heel for modern cereal varieties? (2016)
Journal Article
Von Wirén, N., & Bennett, M. J. (2016). Crosstalk between gibberellin signaling and iron uptake in plants: an Achilles’ heel for modern cereal varieties?. Developmental Cell, 37(2), 110-111. https://doi.org/10.1016/j.devcel.2016.04.003

© 2016 Elsevier Inc. Plants utilize sophisticated morphological and physiological mechanisms to acquire iron from soil. In this issue of Developmental Cell, Wild et al. (2016) find that the hormone signal gibberellic acid is key in integrating these... Read More about Crosstalk between gibberellin signaling and iron uptake in plants: an Achilles’ heel for modern cereal varieties?.

Evolving technologies for growing, imaging and analyzing 3D root system architecture of crop plants: Digital phenotyping of root system architecture (2016)
Journal Article
Piñeros, M. A., Larson, B. G., Shaff, J. E., Schneider, D. J., Falcão, A. X., Yuan, L., Clark, R. T., Craft, E. J., Davis, T. W., Pradier, P.-L., Shaw, N. M., Assaranurak, I., McCouch, S. R., Sturrock, C., Bennett, M. J., & Kochian, L. V. (2016). Evolving technologies for growing, imaging and analyzing 3D root system architecture of crop plants: Digital phenotyping of root system architecture. Journal of Integrative Plant Biology, 58(3), 230-241. https://doi.org/10.1111/jipb.12456

A plant's ability to maintain or improve its yield under limiting conditions, such as nutrient deficiency or drought, can be strongly influenced by root system architecture (RSA), the three-dimensional distribution of the different root types in the... Read More about Evolving technologies for growing, imaging and analyzing 3D root system architecture of crop plants: Digital phenotyping of root system architecture.

The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots (2016)
Journal Article
York, L. M., Carminati, A., Mooney, S. J., Ritz, K., & Bennett, M. J. (2016). The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots. Journal of Experimental Botany, 67(12), 3629-3643. https://doi.org/10.1093/jxb/erw108

Despite often being conceptualized as a thin layer of soil around roots, the rhizosphere is actually a dynamic system of interacting processes. Hiltner originally defined the rhizosphere as the soil influenced by plant roots. However, soil physicists... Read More about The holistic rhizosphere: integrating zones, processes, and semantics in the soil influenced by roots.

Hydrotropism: analysis of the root response to a moisture gradient (2016)
Journal Article
Antoni, R., Dietrich, D., Bennett, M. J., & Rodriguez, P. L. (2016). Hydrotropism: analysis of the root response to a moisture gradient. Methods in Molecular Biology, 1398, 3-9. https://doi.org/10.1007/978-1-4939-3356-3_1

Hydrotropism is a genuine response of roots to a moisture gradient to avoid drought. An experimental system for the induction of hydrotropic root response in petri dishes was designed by pioneering groups in the field. This system uses split agar pla... Read More about Hydrotropism: analysis of the root response to a moisture gradient.

Visual tracking for the recovery of multiple interacting plant root systems from X-ray μCT images (2015)
Journal Article
Mairhofer, S., Johnson, J., Sturrock, C., Bennett, M. J., Mooney, S. J., & Pridmore, T. P. (2016). Visual tracking for the recovery of multiple interacting plant root systems from X-ray μCT images. Machine Vision and Applications, 27(5), 721-734. https://doi.org/10.1007/s00138-015-0733-7

We propose a visual object tracking framework for the extraction of multiple interacting plant root systems from three-dimensional X-ray micro computed tomography images of plants grown in soil. Our method is based on a level set framework guided by... Read More about Visual tracking for the recovery of multiple interacting plant root systems from X-ray μCT images.

Extracting multiple interacting root systems using X-ray microcomputed tomography (2015)
Journal Article
Mairhofer, S., Sturrock, C., Mooney, S. J., Pridmore, T. P., & Bennett, M. J. (2015). Extracting multiple interacting root systems using X-ray microcomputed tomography. Plant Journal, 84(5), 1034-1043. https://doi.org/10.1111/tpj.13047

© 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd. Root system interactions and competition for resources are active areas of research that contribute to our understanding of how roots perc... Read More about Extracting multiple interacting root systems using X-ray microcomputed tomography.

The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana (2015)
Journal Article
Voß, U., Wilson, M. H., Kenobi, K., Gould, P. D., Robertson, F. C., Peer, W. A., Lucas, M., Swarup, K., Casimiro, I., Holman, T. J., Wells, D. M., Péret, B., Goh, T., Fukaki, H., Hodgman, T. C., Laplaze, L., Halliday, K. J., Ljung, K., Murphy, A. S., Hall, A. J., …Bennett, M. J. (2015). The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana. Nature Communications, 6, Article 7641. https://doi.org/10.1038/ncomms8641

The endogenous circadian clock enables organisms to adapt their growth and development to environmental changes. Here we describe how the circadian clock is employed to coordinate responses to the key signal auxin during lateral root (LR) emergence.... Read More about The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana.

Plant embryogenesis requires AUX/LAX-mediated auxin influx (2015)
Journal Article
Robert, H. S., Grunewald, W., Sauer, M., Cannoot, B., Soriano, M., Swarup, R., Weijers, D., Bennett, M. J., Boutilier, K., & Friml, J. (2015). Plant embryogenesis requires AUX/LAX-mediated auxin influx. Development, 142(4), 702-711. https://doi.org/10.1242/dev.115832

The plant hormone auxin and its directional transport are known to play a crucial role in defining the embryonic axis and subsequent development of the body plan. Although the role of PIN auxin efflux transporters has been clearly assigned during emb... Read More about Plant embryogenesis requires AUX/LAX-mediated auxin influx.

On the evaluation of methods for the recovery of plant root systems from X-ray computed tomography images (2014)
Journal Article
Mairhofer, S., Sturrock, C., Wells, D. M., Bennett, M. J., Mooney, S. J., & Pridmore, T. P. (2014). On the evaluation of methods for the recovery of plant root systems from X-ray computed tomography images. Functional Plant Biology, 42(5), 460-470. https://doi.org/10.1071/FP14071

© CSIRO 2015. X-ray microcomputed tomography (μCT) allows nondestructive visualisation of plant root systems within their soil environment and thus offers an alternative to the commonly used destructive methodologies for the examination of plant root... Read More about On the evaluation of methods for the recovery of plant root systems from X-ray computed tomography images.

Systems Analysis of Auxin Transport in the Arabidopsis Root Apex (2014)
Journal Article
Band, L. R., Wells, D. M., Fozard, J. A., Ghetiu, T., French, A. P., Pound, M. P., Wilson, M. H., Yu, L., Li, W., Hijazi, H. I., Oh, J., Pearce, S. P., Perez-Amador, M. A., Yun, J., Kramer, E., Alonso, J. M., Godin, C., Vernoux, T., Hodgman, T. C., Pridmore, T. P., …Bennett, M. J. (2014). Systems Analysis of Auxin Transport in the Arabidopsis Root Apex. Plant Cell, 26(3), 862-875. https://doi.org/10.1105/tpc.113.119495

Auxin is a key regulator of plant growth and development. Within the root tip, auxin distribution plays a crucial role specifying developmental zones and coordinating tropic responses. Determining how the organ-scale auxin pattern is regulated at the... Read More about Systems Analysis of Auxin Transport in the Arabidopsis Root Apex.

A scanner system for high-resolution quantification of variation in root growth dynamics of Brassica rapa genotypes (2014)
Journal Article
variation in root growth dynamics of Brassica rapa genotypes. Journal of Experimental Botany, 65(8), 2039-2048. https://doi.org/10.1093/jxb/eru048

The potential exists to breed for root system architectures that optimize resource acquisition. However, this requires the ability to screen root system development quantitatively, with high resolution, in as natural an environment as possible, with... Read More about A scanner system for high-resolution quantification of variation in root growth dynamics of Brassica rapa genotypes.

Mechanical modelling quantifies the functional importance of outer tissue layers during root elongation and bending (2014)
Journal Article
Dyson, R. J., Vizcay-Barrena, G., Band, L. R., Fernandes, A. N., French, A. P., Fozard, J. A., Hodgman, T. C., Kenobi, K., Pridmore, T. P., Stout, M., Wells, D. M., Wilson, M. H., Bennett, M. J., & Jensen, O. E. (2014). Mechanical modelling quantifies the functional importance of outer tissue layers during root elongation and bending. New Phytologist, 202(4), 1212-1222. https://doi.org/10.1111/nph.12764

Root elongation and bending require the coordinated expansion of multiple cells of different types. These processes are regulated by the action of hormones that can target distinct cell layers. We use a mathematical model to characterise the influenc... Read More about Mechanical modelling quantifies the functional importance of outer tissue layers during root elongation and bending.

Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues (2013)
Journal Article
Lucas, M., Kenobi, K., Von Wangenheim, D., Voß, U., Swarup, K., De Smet, I., Van Damme, D., Lawrence, T., Péret, B., Moscardi, E., Barbeau, D., Godin, C., Salt, D., Guyomarc'h, S., Stelzer, E. H., Maizel, A., Laplaze, L., & Bennett, M. J. (2013). Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues. Proceedings of the National Academy of Sciences, 110(13), 5229-5234. https://doi.org/10.1073/pnas.1210807110

In Arabidopsis, lateral root primordia (LRPs) originate from pericycle cells located deep within the parental root and have to emerge through endodermal, cortical, and epidermal tissues. These overlaying tissues place biomechanical constraints on the... Read More about Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues.