Skip to main content

Research Repository

Advanced Search

JONATHAN ATKINSON


Loss of ancestral function in duckweed roots is accompanied by progressive anatomical reduction and a re-distribution of nutrient transporters (2023)
Journal Article
Ware, A., Jones, D. H., Flis, P., Chrysanthou, E., Smith, K. E., Kümpers, B. M., …Bishopp, A. (2023). Loss of ancestral function in duckweed roots is accompanied by progressive anatomical reduction and a re-distribution of nutrient transporters. Current Biology, 33(9), 1795-1802. https://doi.org/10.1016/j.cub.2023.03.025

Organ loss occurs frequently during plant and animal evolution. Sometimes, non-functional organs are retained through evolution. Vestigial organs are defined as genetically determined structures that have lost their ancestral (or salient) function. D... Read More about Loss of ancestral function in duckweed roots is accompanied by progressive anatomical reduction and a re-distribution of nutrient transporters.

Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat (2022)
Journal Article
Kareem, S. H., Hawkesford, M. J., DeSilva, J., Weerasinghe, M., Wells, D. M., Pound, M. P., …Foulkes, M. J. (2022). Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat. European Journal of Agronomy, 140, Article 126603. https://doi.org/10.1016/j.eja.2022.126603

Root system architecture (RSA) is important in optimizing the use of nitrogen. High-throughput phenotyping techniques may be used to study root system architecture traits under controlled environments. A root phenotyping platform, consisting of germi... Read More about Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat.

Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat (2022)
Journal Article
GRIFFITHS, M., ATKINSON, J. A., Gardiner, L. J., SWARUP, R., POUND, M. P., WILSON, M. H., …WELLS, D. M. (2022). Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat. Journal of Integrative Agriculture, 21(4), 917-932. https://doi.org/10.1016/s2095-3119%2821%2963700-0

The root system architecture (RSA) of a crop has a profound effect on the uptake of nutrients and consequently the potential yield. However, little is known about the genetic basis of RSA and resource adaptive responses in wheat (Triticum aestivum L.... Read More about Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat.

X-ray CT reveals 4D root system development and lateral root responses to nitrate in soil (2022)
Journal Article
Griffiths, M., Mellor, N., Sturrock, C. J., Atkinson, B. S., Johnson, J., Mairhofer, S., …Wells, D. M. (2022). X-ray CT reveals 4D root system development and lateral root responses to nitrate in soil. Plant Phenome Journal, 5(1), Article e20036. https://doi.org/10.1002/ppj2.20036

The spatial arrangement of the root system, termed root system architecture, is important for resource acquisition as it directly affects the soil zone explored. Methods for phenotyping roots are mostly destructive, which prevents analysis of roots o... Read More about X-ray CT reveals 4D root system development and lateral root responses to nitrate in soil.

Dual expression and anatomy lines allow simultaneous visualization of gene expression and anatomy (2021)
Journal Article
Kümpers, B. M. C., Han, J., Vaughan-Hirsch, J., Redman, N., Ware, A., Atkinson, J. A., …Bishopp, A. (2022). Dual expression and anatomy lines allow simultaneous visualization of gene expression and anatomy. Plant Physiology, 188(1), 56-69. https://doi.org/10.1093/plphys/kiab503

Studying the developmental genetics of plant organs, requires following gene expression in specific tissues. To facilitate this, we have developed the Dual Expression Anatomy Lines (DEAL), which incorporate a red plasma membrane marker alongside a fl... Read More about Dual expression and anatomy lines allow simultaneous visualization of gene expression and anatomy.

Shifts in Soil Structure, Biological, and Functional Diversity Under Long-Term Carbon Deprivation (2021)
Journal Article
George, P. B., Fidler, D. B., Van Nostrand, J. D., Atkinson, J. A., Mooney, S. J., Creer, S., …Jones, D. L. (2021). Shifts in Soil Structure, Biological, and Functional Diversity Under Long-Term Carbon Deprivation. Frontiers in Microbiology, 12, 1-16. https://doi.org/10.3389/fmicb.2021.735022

Soil organic matter is composed of a variety of carbon (C) forms. However, not all forms are equally accessible to soil microorganisms. Deprivation of C inputs will cause changes in the physical and microbial community structures of soils; yet the tr... Read More about Shifts in Soil Structure, Biological, and Functional Diversity Under Long-Term Carbon Deprivation.

The HK5 and HK6 cytokinin receptors mediate diverse developmental pathways in rice (2020)
Journal Article
Burr, C. A., Sun, J., Yamburenko, M. V., Willoughby, A., Hodgens, C., Boeshore, S. L., …Kieber, J. J. (2020). The HK5 and HK6 cytokinin receptors mediate diverse developmental pathways in rice. Development, 147(20), Article dev191734. https://doi.org/10.1242/dev.191734

© 2020. Published by The Company of Biologists Ltd. The phytohormone cytokinin regulates diverse aspects of plant growth and development. Our understanding of the metabolism and perception of cytokinin has made great strides in recent years, mostly f... Read More about The HK5 and HK6 cytokinin receptors mediate diverse developmental pathways in rice.

Low-cost automated vectors and modular environmental sensors for plant phenotyping (2020)
Journal Article
Bagley, S. A., Atkinson, J. A., Hunt, H., Wilson, M. H., Pridmore, T. P., & Wells, D. M. (2020). Low-cost automated vectors and modular environmental sensors for plant phenotyping. Sensors, 20(11), https://doi.org/10.3390/s20113319

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. High-throughput plant phenotyping in controlled environments (growth chambers and glasshouses) is often delivered via large, expensive installations, leading to limited access and the increase... Read More about Low-cost automated vectors and modular environmental sensors for plant phenotyping.

RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures (2019)
Journal Article
Yasrab, R., Atkinson, J. A., Wells, D. M., French, A. P., Pridmore, T. P., & Pound, M. P. (2019). RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures. GigaScience, 8(11), https://doi.org/10.1093/gigascience/giz123

© The Author(s) 2019. Published by Oxford University Press. BACKGROUND: In recent years quantitative analysis of root growth has become increasingly important as a way to explore the influence of abiotic stress such as high temperature and drought on... Read More about RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures.

Soil strength influences wheat root interactions with soil macropores (2019)
Journal Article
Atkinson, J. A., Hawkesford, M. J., Whalley, W. R., Zhou, H., & Mooney, S. J. (2020). Soil strength influences wheat root interactions with soil macropores. Plant, Cell and Environment, 43(1), 235-245. https://doi.org/10.1111/pce.13659

Deep rooting is critical for access to water and nutrients found in subsoil. However, damage to soil structure and the natural increase in soil strength with depth, often impedes root penetration. Evidence suggests that roots use macropores (soil cav... Read More about Soil strength influences wheat root interactions with soil macropores.