Skip to main content

Research Repository

Advanced Search

Outputs (84)

Using cohesive zone models with digital image correlation to obtain a mixed mode I/II fracture envelope of a tough epoxy (2023)
Journal Article
Jackson, C. M., McGuire, J. A., Losada, M. E., Maskery, I., Ashcroft, I., De Vita, R., & Dillard, D. A. (2024). Using cohesive zone models with digital image correlation to obtain a mixed mode I/II fracture envelope of a tough epoxy. Engineering Fracture Mechanics, 295, Article 109732. https://doi.org/10.1016/j.engfracmech.2023.109732

This work describes a method in which the digital image correlation (DIC) method and finite element analysis (FEA) were used to create a quasi-static mixed-mode fracture envelope for bonded joints consisting of 2024-T3 Al adherends and a tough struct... Read More about Using cohesive zone models with digital image correlation to obtain a mixed mode I/II fracture envelope of a tough epoxy.

Creep Characterization of Inconel 718 Lattice Metamaterials Manufactured by Laser Powder Bed Fusion (2023)
Journal Article
Bhuwal, A. S., Pang, Y., Maskery, I., Ashcroft, I., Sun, W., & Liu, T. (in press). Creep Characterization of Inconel 718 Lattice Metamaterials Manufactured by Laser Powder Bed Fusion. Advanced Engineering Materials, 2300643. https://doi.org/10.1002/adem.202300643

Lattice metamaterials manufactured by laser powder bed fusion (LPBF) are limited by their performance for critical applications. LPBF materials have microstructural or macroscale anomalies, such as suboptimal grain size, morphology, and lack of fusio... Read More about Creep Characterization of Inconel 718 Lattice Metamaterials Manufactured by Laser Powder Bed Fusion.

Amorphous-crystalline nanostructured Nd-Fe-B permanent magnets using laser powder bed fusion: Metallurgy and magnetic properties (2023)
Journal Article
Wu, J., Aboulkhair, N. T., Robertson, S., Zhou, Z., Bagot, P. A., Moody, M. P., …Hague, R. J. (2023). Amorphous-crystalline nanostructured Nd-Fe-B permanent magnets using laser powder bed fusion: Metallurgy and magnetic properties. Acta Materialia, 259, 119239. https://doi.org/10.1016/j.actamat.2023.119239

Laser powder-bed fusion (PBF-LB), a class of additive manufacturing (AM), has attracted wide interest in the production of Nd-Fe-B permanent magnets, benefiting from the minimisation of waste of rare-earth elements and the post-processing requirement... Read More about Amorphous-crystalline nanostructured Nd-Fe-B permanent magnets using laser powder bed fusion: Metallurgy and magnetic properties.

The impact of the risk of build failure on energy consumption in additive manufacturing (2022)
Journal Article
Wang, H., Baumers, M., Basak, S., He, Y., & Ashcroft, I. (2022). The impact of the risk of build failure on energy consumption in additive manufacturing. Journal of Industrial Ecology, 26(5), 1771-1783. https://doi.org/10.1111/jiec.13318

Additive manufacturing (AM), also known as 3D printing, is associated with significant promise in the manufacturing sector. However, it has been shown that the risk of build failure has a substantial impact on the costs of AM and that this results fr... Read More about The impact of the risk of build failure on energy consumption in additive manufacturing.

From impact to solidification in drop-on-demand metal additive manufacturing using MetalJet (2022)
Journal Article
Gilani, N., Aboulkhair, N. T., Simonelli, M., East, M., Ashcroft, I. A., & Hague, R. J. (2022). From impact to solidification in drop-on-demand metal additive manufacturing using MetalJet. Additive Manufacturing, 55, Article 102827. https://doi.org/10.1016/j.addma.2022.102827

Drop-on-demand metal jetting is a promising additive manufacturing (AM) technology that is gaining interest due to its capability to directly print complex single and multi-material components at high resolutions. It also has key advantages over othe... Read More about From impact to solidification in drop-on-demand metal additive manufacturing using MetalJet.

On the thermomechanical aging of LPBF alloy 718 (2022)
Journal Article
Sanchez, S., Gaspard, G., Hyde, C. J., Ashcroft, I. A., Ravi, G. A., & Clare, A. T. (2022). On the thermomechanical aging of LPBF alloy 718. Materials Science and Engineering: A, 841, Article 142998. https://doi.org/10.1016/j.msea.2022.142998

Heat treatment of products post additive manufacture are considered hugely important since the metallurgical condition post process is suboptimal. In the case of nickel-based superalloys, grain size, precipitate distribution and precipitate size are... Read More about On the thermomechanical aging of LPBF alloy 718.

Continuous fibre composite 3D printing with pultruded carbon/PA6 commingled fibres: Processing and mechanical properties (2022)
Journal Article
Zhuo, P., Li, S., Ashcroft, I., & Jones, I. A. (2022). Continuous fibre composite 3D printing with pultruded carbon/PA6 commingled fibres: Processing and mechanical properties. Composites Science and Technology, 221, Article 109341. https://doi.org/10.1016/j.compscitech.2022.109341

Continuous Fibre composite 3D printing (CF-3DP) technology is a newly developed Additive Manufacturing (AM) process. By employing continuous fibre as a reinforcement for the composite, the mechanical properties of the 3D printed part can be significa... Read More about Continuous fibre composite 3D printing with pultruded carbon/PA6 commingled fibres: Processing and mechanical properties.

Reactive Jetting of High Viscosity Nanocomposites for Dielectric Elastomer Actuation (2022)
Journal Article
Malas, A., Saleh, E., Giménez‐López, M. D. C., Rance, G. A., Helps, T., Taghavi, M., …Goodridge, R. D. (2022). Reactive Jetting of High Viscosity Nanocomposites for Dielectric Elastomer Actuation. Advanced Materials Technologies, 7(6), Article 2101111. https://doi.org/10.1002/admt.202101111

The layer-by-layer nature of additive manufacturing is well matched to the layer construction of stacked dielectric actuators, with inkjet printing offering a unique opportunity due to its droplet-on-demand capability, suitable for multi-material pro... Read More about Reactive Jetting of High Viscosity Nanocomposites for Dielectric Elastomer Actuation.

FLatt Pack: A research-focussed lattice design program (2021)
Journal Article
Maskery, I., Parry, L. A., Padrão, D., Hague, R., & Ashcroft, I. A. (2022). FLatt Pack: A research-focussed lattice design program. Additive Manufacturing, 49, Article 102510. https://doi.org/10.1016/j.addma.2021.102510

Lattice structures are an important aspect of design for additive manufacturing (DfAM). They enable significant component light-weighting and the tailoring of a wide range of physical responses; mechanical, thermal, acoustic, etc. In turn, lattice de... Read More about FLatt Pack: A research-focussed lattice design program.

Insights into drop-on-demand metal additive manufacturing through an integrated experimental and computational study (2021)
Journal Article
Gilani, N., Aboulkhair, N. T., Simonelli, M., East, M., Ashcroft, I., & Hague, R. J. (2021). Insights into drop-on-demand metal additive manufacturing through an integrated experimental and computational study. Additive Manufacturing, 48(Part B), Article 102402. https://doi.org/10.1016/j.addma.2021.102402

Drop-on-demand metal jetting is a recent additive manufacturing technology opening new opportunities for the fabrication of complex single and multi-metal components. MetalJet, the Océ developed technique used in this study, has the capacity to produ... Read More about Insights into drop-on-demand metal additive manufacturing through an integrated experimental and computational study.

Low thermal expansion machine frame designs using lattice structures (2021)
Journal Article
Juasiripukdee, P., Maskery, I., Ashcroft, I., & Leach, R. (2021). Low thermal expansion machine frame designs using lattice structures. Applied Sciences, 11(19), Article 9135. https://doi.org/10.3390/app11199135

In this work, we investigated tessellating cellular (or lattice) structures for use in a low thermal expansion machine frame. We proposed a concept for a lattice structure with tailorable effective coefficient of thermal expansion (CTE). The design i... Read More about Low thermal expansion machine frame designs using lattice structures.

Process-structure-property relationships in laser powder bed fusion of permanent magnetic Nd-Fe-B (2021)
Journal Article
Wu, J., Aboulkhair, N. T., Degano, M., Ashcroft, I., & Hague, R. J. (2021). Process-structure-property relationships in laser powder bed fusion of permanent magnetic Nd-Fe-B. Materials and Design, 209, Article 109992. https://doi.org/10.1016/j.matdes.2021.109992

Laser powder-bed fusion (L-PBF), as an additive manufacturing (AM) technique, has demonstrated excellent capabilities in achieving degrees of freedom in manufacturing that are otherwise unattainable. The potential of combining Nd-Fe-B as a permanent... Read More about Process-structure-property relationships in laser powder bed fusion of permanent magnetic Nd-Fe-B.

Material extrusion additive manufacturing of continuous fibre reinforced polymer matrix composites: A review and outlook (2021)
Journal Article
Zhuo, P., Li, S., Ashcroft, I. A., & Jones, A. I. (2021). Material extrusion additive manufacturing of continuous fibre reinforced polymer matrix composites: A review and outlook. Composites Part B: Engineering, 224, Article 109143. https://doi.org/10.1016/j.compositesb.2021.109143

In recent years, three-dimensional printing (3DP) technology has developed to include composite materials. Most of the development to date in this area has involved particulate or short fibre reinforced composites, whilst continuous fibre printing re... Read More about Material extrusion additive manufacturing of continuous fibre reinforced polymer matrix composites: A review and outlook.

Material extrusion additive manufacturing of continuous fibre reinforced polymer matrix composites: A review and outlook (2021)
Journal Article
Zhuo, P., Li, S., Ashcroft, I. A., & Jones, A. I. (2021). Material extrusion additive manufacturing of continuous fibre reinforced polymer matrix composites: A review and outlook. Composites Part B: Engineering, 224, Article 109143. https://doi.org/10.1016/j.compositesb.2021.109143

In recent years, three-dimensional printing (3DP) technology has developed to include composite materials. Most of the development to date in this area has involved particulate or short fibre reinforced composites, whilst continuous fibre printing re... Read More about Material extrusion additive manufacturing of continuous fibre reinforced polymer matrix composites: A review and outlook.

Localization and coalescence of imperfect planar FCC truss lattice metamaterials under multiaxial loadings (2021)
Journal Article
Bhuwal, A. S., Liu, T., Ashcroft, I., & Sun, W. (2021). Localization and coalescence of imperfect planar FCC truss lattice metamaterials under multiaxial loadings. Mechanics of Materials, 160, Article 103996. https://doi.org/10.1016/j.mechmat.2021.103996

This study investigates the effect of stress triaxiality on the failure mechanisms of an-isotropic perfect and imperfect planar FCC (Face Centred Cubic) truss lattice metamaterials. Three types of imperfection have been considered in the numerical mo... Read More about Localization and coalescence of imperfect planar FCC truss lattice metamaterials under multiaxial loadings.

Modelling the influence of UV curing strategies for optimisation of inkjet based 3D printing (2021)
Journal Article
Zhao, P., He, Y., Trindade, G. F., Baumers, M., Irvine, D., Hague, R., …Wildman Conceptualisation, R. (2021). Modelling the influence of UV curing strategies for optimisation of inkjet based 3D printing. Materials and Design, 208, Article 109889. https://doi.org/10.1016/j.matdes.2021.109889

A predictive model is developed to assist in the design and manufacture of structures by inkjet based 3D printing (IJ3DP)/additive manufacturing. IJ3DP often exploits photopolymerisation to rapidly convert a photoreactive liquid ink into a solid prod... Read More about Modelling the influence of UV curing strategies for optimisation of inkjet based 3D printing.

Exploiting Generative Design for 3D Printing of Bacterial Biofilm Resistant Composite Devices (2021)
Journal Article
He, Y., Abdi, M., Trindade, G. F., Begines, B., Dubern, J. F., Prina, E., …Wildman, R. D. (2021). Exploiting Generative Design for 3D Printing of Bacterial Biofilm Resistant Composite Devices. Advanced Science, 8(15), Article 2100249. https://doi.org/10.1002/advs.202100249

As the understanding of disease grows, so does the opportunity for personalization of therapies targeted to the needs of the individual. To bring about a step change in the personalization of medical devices it is shown that multi-material inkjet-bas... Read More about Exploiting Generative Design for 3D Printing of Bacterial Biofilm Resistant Composite Devices.

Powder Bed Fusion of nickel-based superalloys: A review (2021)
Journal Article
Sanchez, S., Xu, Z., Smith, P., Gaspard, G., Hyde, C. J., Ashcroft, I. A., …Clare, A. T. (2021). Powder Bed Fusion of nickel-based superalloys: A review. International Journal of Machine Tools and Manufacture, 165, Article 103729. https://doi.org/10.1016/j.ijmachtools.2021.103729

Powder Bed Fusion (PBF) techniques constitute a family of Additive Manufacturing (AM) processes, which are characterised by high design flexibility and no tooling requirement. This makes PBF techniques attractive to many modern manufacturing sectors... Read More about Powder Bed Fusion of nickel-based superalloys: A review.

Multi-laser scan strategies for enhancing creep performance in LPBF (2021)
Journal Article
Sanchez, S., Hyde, C. J., Clare, A. T., & Ashcroft, I. A. (2021). Multi-laser scan strategies for enhancing creep performance in LPBF. Additive Manufacturing, 41, Article 101948. https://doi.org/10.1016/j.addma.2021.101948

Laser Powder Bed Fusion (LPBF) enables complex structures to be manufactured, which is attractive to industries where augmented service performance can be achieved. However, the build time of LPBF can be slower than traditional manufacturing processe... Read More about Multi-laser scan strategies for enhancing creep performance in LPBF.

The creep behaviour of nickel alloy 718 manufactured by laser powder bed fusion (2021)
Journal Article
Sanchez, S., Gaspard, G., Hyde, C., Ashcroft, I., Ravi, G., & Clare, A. (2021). The creep behaviour of nickel alloy 718 manufactured by laser powder bed fusion. Materials and Design, 204, Article 109647. https://doi.org/10.1016/j.matdes.2021.109647

Components manufactured by laser powder bed fusion (LPBF) are limited by their performance for use in critical applications. LPBF materials have microstructural defects, such as suboptimal grain size and morphology, and macroscale anomalies, such as... Read More about The creep behaviour of nickel alloy 718 manufactured by laser powder bed fusion.

Laser powder bed fusion of soda lime silica glass: optimisation of processing parameters and evaluation of part properties (2021)
Journal Article
Datsiou, K. C., Spirrett, F., Ashcroft, I., Magallanes, M., Christie, S., & Goodridge, R. (2021). Laser powder bed fusion of soda lime silica glass: optimisation of processing parameters and evaluation of part properties. Additive Manufacturing, 39, Article 101880. https://doi.org/10.1016/j.addma.2021.101880

Glass has a number of attractive properties, such as transparency, chemical resistance, good thermal stability and high electrical resistivity , that make it a favourable material for a range of applications, including medical technology, electronics... Read More about Laser powder bed fusion of soda lime silica glass: optimisation of processing parameters and evaluation of part properties.

A framework for differentiation in composed digital-physical products (2020)
Journal Article
Baumers, M., Ashcroft, I., Benford, S., Flintham, M., Koleva, B., Tóth, Z., & Winklhofer, H. (2020). A framework for differentiation in composed digital-physical products. International Journal of Mechatronics and Manufacturing Systems, 13(4), 286-298. https://doi.org/10.1504/IJMMS.2020.112351

Product-service systems (PSS) composed of physical products and digital services are emerging as an important new product category. In this paper we suggest that the established metaphor of 'layering' is insufficient to capture the diverse ways in wh... Read More about A framework for differentiation in composed digital-physical products.

Development and Testing of Soft Magnetic Rotor for a Switched Reluctance Motor Built Through Additive Manufacturing Technology (2020)
Conference Proceeding
Gargalis, L., Madonna, V., Giangrande, P., Rocca, R., Ashcroft, I., Hague, R., & Galea, M. (2020). Development and Testing of Soft Magnetic Rotor for a Switched Reluctance Motor Built Through Additive Manufacturing Technology. In 2020 23rd International Conference on Electrical Machines and Systems (ICEMS) (263-268). https://doi.org/10.23919/icems50442.2020.9290893

Additive manufacturing, commonly known as 3D printing, is an emerging technology that is gaining considerable research interest in recent years. In particular, metal printing methodologies might be successfully employed in developing lightweight and... Read More about Development and Testing of Soft Magnetic Rotor for a Switched Reluctance Motor Built Through Additive Manufacturing Technology.

3D Printing as a Technology Enabler for Electrical Machines: Manufacturing and Testing of a Salient Pole Rotor for SRM (2020)
Conference Proceeding
Gargalis, L., Madonna, V., Giangrande, P., Hardy, M., Ashcroft, I., Galea, M., & Hague, R. (2020). 3D Printing as a Technology Enabler for Electrical Machines: Manufacturing and Testing of a Salient Pole Rotor for SRM. In 2020 International Conference on Electrical Machines (ICEM) (12-18). https://doi.org/10.1109/icem49940.2020.9270737

Among the various technology enablers for modern electrical machines, additive manufacturing plays a key role. The advantage of having a precise control of the shape of ferromagnetic structures, whilst achieving good electromagnetic performance, fits... Read More about 3D Printing as a Technology Enabler for Electrical Machines: Manufacturing and Testing of a Salient Pole Rotor for SRM.

Additive Manufacturing and Testing of a Soft Magnetic Rotor for a Switched Reluctance Motor (2020)
Journal Article
Gargalis, L., Madonna, V., Giangrande, P., Rocca, R., Hardy, M., Ashcroft, I., …Hague, R. (2020). Additive Manufacturing and Testing of a Soft Magnetic Rotor for a Switched Reluctance Motor. IEEE Access, 8, 206982-206991. https://doi.org/10.1109/ACCESS.2020.3037190

Additive manufacturing is acknowledged as a key enabling technology, although its adoption is still constrained to niche applications. A promising area for this technology is the production of electrical machines (EMs) and/or their main components (e... Read More about Additive Manufacturing and Testing of a Soft Magnetic Rotor for a Switched Reluctance Motor.

Understanding Mechanical Properties in Fused Filament Fabrication of Polyether Ether Ketone (2020)
Journal Article
Pu, J., McIlroy, C., Jones, A., & Ashcroft, I. (2021). Understanding Mechanical Properties in Fused Filament Fabrication of Polyether Ether Ketone. Additive Manufacturing, 37, Article 101673. https://doi.org/10.1016/j.addma.2020.101673

Using dynamic mechanical analysis (DMA), we investigate differences in the mechanical properties of a single-filament wall of polyether ether ketone (PEEK) constructed using fused filament fabrication (FFF) under a range of different printing conditi... Read More about Understanding Mechanical Properties in Fused Filament Fabrication of Polyether Ether Ketone.

The deformation and elastic anisotropy of a new gyroid-based honeycomb made by laser sintering (2020)
Journal Article
Maskery, I., & Ashcroft, I. A. (2020). The deformation and elastic anisotropy of a new gyroid-based honeycomb made by laser sintering. Additive Manufacturing, 36, https://doi.org/10.1016/j.addma.2020.101548

© 2020 The Author(s) The stiffness, anisotropy and structural deformation of three gyroid-based lattices was investigated, with particular focus on a newly proposed honeycomb gyroid. This honeycomb is based on a modified triply periodic minimal surfa... Read More about The deformation and elastic anisotropy of a new gyroid-based honeycomb made by laser sintering.

Generation of graded porous structures by control of process parameters in the selective laser melting of a fixed ratio salt-metal feedstock (2020)
Journal Article
Aboulkhair, N. T., Zhao, G., Hague, R. J., Kennedy, A. R., Ashcroft, I. A., & Clare, A. T. (2020). Generation of graded porous structures by control of process parameters in the selective laser melting of a fixed ratio salt-metal feedstock. Journal of Manufacturing Processes, 55, 249-253. https://doi.org/10.1016/j.jmapro.2020.04.039

The demonstration of salt dissolution incorporated within laser powder-bed fusion fabrication processes has allowed the creation of complex porous structures without the need for sophisticated design algorithms. This serves to simplify the process, f... Read More about Generation of graded porous structures by control of process parameters in the selective laser melting of a fixed ratio salt-metal feedstock.

Phase-field modelling of brittle fracture in thin shell elements based on the MITC4+ approach (2020)
Journal Article
Pillai, U., Triantafyllou, S. P., Ashcroft, I., Essa, Y., & de la Escalera, F. M. (2020). Phase-field modelling of brittle fracture in thin shell elements based on the MITC4+ approach. Computational Mechanics, 65, 1413–1432. https://doi.org/10.1007/s00466-020-01827-z

We present a phase field based MITC4+ shell element formulation to simulate fracture propagation in thin shell structures. The employed MITC4+ approach renders the element shear- and membrane- locking free, hence providing high-fidelity fracture simu... Read More about Phase-field modelling of brittle fracture in thin shell elements based on the MITC4+ approach.

Optimal orientation of fibre composites for strength based on Hashin’s criteria optimality conditions (2020)
Journal Article
Ferreira, R. T., & Ashcroft, I. A. (2020). Optimal orientation of fibre composites for strength based on Hashin’s criteria optimality conditions. Structural and Multidisciplinary Optimization, 61, 2155–2176. https://doi.org/10.1007/s00158-019-02462-w

© 2020, The Author(s). The Hashin’s strength criteria are usually employed in first ply failure and damage-onset analysis of fibre-reinforced composites. This work presents optimality conditions of local material orientations for these criteria, in t... Read More about Optimal orientation of fibre composites for strength based on Hashin’s criteria optimality conditions.

The Effects of Feature Sizes in Selectively Laser Melted Ti-6Al-4V Parts on the Validity of Optimised Process Parameters (2019)
Journal Article
Phutela, C., Aboulkhair, N. T., Tuck, C. J., & Ashcroft, I. (2019). The Effects of Feature Sizes in Selectively Laser Melted Ti-6Al-4V Parts on the Validity of Optimised Process Parameters. Materials, 13(1), https://doi.org/10.3390/ma13010117

Ti-6Al-4V is a popular alloy due to its high strength-to-weight ratio and excellent corrosion resistance. Many applications of additively manufactured Ti-6Al-4V using selective laser melting (SLM) have reached technology readiness. However, issues li... Read More about The Effects of Feature Sizes in Selectively Laser Melted Ti-6Al-4V Parts on the Validity of Optimised Process Parameters.

Technique for Processing of Continuous Carbon Fibre Reinforced PEEK for Fused Filament Fabrication (2019)
Conference Proceeding
Pu, J., Saleh, E., Ashcroft, I., & Jones, A. (2019). Technique for Processing of Continuous Carbon Fibre Reinforced PEEK for Fused Filament Fabrication

3D printing of light-weight and mechanically-strong structures facilitates several applications. 3D printing of continuous carbon fibre reinforced polyetheretherketone (PEEK) presents exciting possibilities as the high stiffness and strength of the h... Read More about Technique for Processing of Continuous Carbon Fibre Reinforced PEEK for Fused Filament Fabrication.

Electrical resistivity of pure copper processed by medium-powered laser powder bed fusion additive manufacturing for use in electromagnetic applications (2019)
Journal Article
Silbernagel, C., Gargalis, L., Ashcroft, I., Hague, R., Galea, M., & Dickens, P. (2019). Electrical resistivity of pure copper processed by medium-powered laser powder bed fusion additive manufacturing for use in electromagnetic applications. Additive Manufacturing, 29, https://doi.org/10.1016/j.addma.2019.100831

Pure copper is an excellent thermal and electrical conductor, however, attempts to process it with additive manufacturing (AM) technologies have seen various levels of success. While electron beam melting (EBM) has successfully processed pure copper... Read More about Electrical resistivity of pure copper processed by medium-powered laser powder bed fusion additive manufacturing for use in electromagnetic applications.

3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting (2019)
Journal Article
Aboulkhair, N. T., Simonelli, M., Parry, L., Ashcroft, I., Tuck, C., & Hague, R. (2019). 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. Progress in Materials Science, 106, https://doi.org/10.1016/j.pmatsci.2019.100578

© 2019 The Authors Metal Additive Manufacturing (AM) processes, such as selective laser melting (SLM), enable the fabrication of arbitrary 3D-structures with unprecedented degrees of freedom. Research is rapidly progressing in this field, with promis... Read More about 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting.

Additive manufacturing of glass with laser powder bed fusion (2019)
Journal Article
Datsiou, K. C., Saleh, E., Spirrett, F., Goodridge, R., Ashcroft, I., & Eustice, D. A. (2019). Additive manufacturing of glass with laser powder bed fusion. Journal of the American Ceramic Society, 102(8), 4410-4414. https://doi.org/10.1111/jace.16440

Its transparency, aesthetic appeal, chemical inertness and electrical resistivity make glass an excellent candidate for small and large‐scale applications in the chemical, electronics, automotive, aerospace and architectural industries. Additive manu... Read More about Additive manufacturing of glass with laser powder bed fusion.

Direct-writing by active tooling in electrochemical jet processing (2019)
Journal Article
Mitchell-Smith, J., Bisterov, I., Speidel, A., Ashcroft, I., & Clare, A. T. (2019). Direct-writing by active tooling in electrochemical jet processing. Manufacturing Letters, 19, 15-20. https://doi.org/10.1016/j.mfglet.2019.01.001

Recent innovations in electrochemical jet processing have caused step changes in process flexibility and precision. However, utilisation of these innovations requires the development of new machine tool technology. Presented here is a new methodology... Read More about Direct-writing by active tooling in electrochemical jet processing.

Geometrical effects on residual stress in selective laser melting (2018)
Journal Article
Parry, L., Ashcroft, I., & Wildman, R. (2019). Geometrical effects on residual stress in selective laser melting. Additive Manufacturing, 25, 166-175. https://doi.org/10.1016/j.addma.2018.09.026

Selective laser melting is an increasingly attractive technology for the manufacture of complex and low volume / high value metal parts. However, the inevitable residual stresses that are generated can lead to defects or build failure. Due to the com... Read More about Geometrical effects on residual stress in selective laser melting.

Targeted rework of powder bed fusion additive manufacturing (2018)
Conference Proceeding
Dryburgh, P., Patel, R., Catchpole-Smith, S., Hirsch, M., Parry, L., Smith, R. J., …Clare, A. T. (2018). Targeted rework of powder bed fusion additive manufacturing. In Proceedings of LPM2018 - the 19th International Symposium on Laser Precision Microfabrication (#18/030)

There is a clear industrial pull to fabricate high value components using premium high temperature aerospace materials by additive manufacturing. Inconveniently, the same materials’ properties which allow them to perform well in service render them... Read More about Targeted rework of powder bed fusion additive manufacturing.

Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading (2018)
Journal Article
Maskery, I., Aremu, A., Parry, L., Wildman, R., Tuck, C., & Ashcroft, I. (2018). Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading. Materials and Design, 155, 220-232. https://doi.org/10.1016/j.matdes.2018.05.058

In this paper we present a numerical investigation into surface-based lattice structures with the aim of facilitating their design for additive manufacturing. We give the surface equations for these structures and show how they can be used to tailor... Read More about Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading.

Compressive failure modes and energy absorption in additively manufactured double gyroid lattices (2018)
Journal Article
Maskery, I., Aboulkhair, N. T., Aremu, A., Tuck, C., & Ashcroft, I. (in press). Compressive failure modes and energy absorption in additively manufactured double gyroid lattices. Additive Manufacturing, 16, https://doi.org/10.1016/j.addma.2017.04.003

Lattice structures are excellent candidates for lightweight, energy absorbing applications such as personal protective equipment. In this paper we explore several important aspects of lattice design and production by metal additive manufacturing, inc... Read More about Compressive failure modes and energy absorption in additively manufactured double gyroid lattices.

VOLCO: a predictive model for 3D printed microarchitecture (2018)
Journal Article
Gleadall, A., Ashcroft, I., & Segal, J. (in press). VOLCO: a predictive model for 3D printed microarchitecture. Additive Manufacturing, 21, https://doi.org/10.1016/j.addma.2018.04.004

Extrusion-based 3D printing is widely used for porous scaffolds in which polymer filaments are extruded in the form of log-pile structures. These structures are typically designed with the assumption that filaments have a continuous cylindrical profi... Read More about VOLCO: a predictive model for 3D printed microarchitecture.

Dynamic compressive response of additively manufactured AlSi10Mg alloy hierarchical honeycomb structures (2018)
Journal Article
Zhang, Y., Liu, T., Ren, H., Maskery, I., & Ashcroft, I. (2018). Dynamic compressive response of additively manufactured AlSi10Mg alloy hierarchical honeycomb structures. Composite Structures, 195, 45-59. https://doi.org/10.1016/j.compstruct.2018.04.021

Periodic honeycombs have been used for their high strength, low weight and multifunctionality. The quasi-static and dynamic compressive responses of three types of additively manufactured AlSi10Mg honeycomb structures, specifically a single-scale hon... Read More about Dynamic compressive response of additively manufactured AlSi10Mg alloy hierarchical honeycomb structures.

Electrical resistivity of additively manufactured AlSi10Mg for use in electric motors (2018)
Journal Article
Silbernagel, C., Ashcroft, I., Dickens, P., & Galea, M. (2018). Electrical resistivity of additively manufactured AlSi10Mg for use in electric motors. Additive Manufacturing, 21, https://doi.org/10.1016/j.addma.2018.03.027

Additive manufacturing (AM) opens up a design freedom beyond the limits of traditional manufacturing techniques. Electrical windings created through AM could lead to more powerful and compact electric motors, but only if the electrical properties of... Read More about Electrical resistivity of additively manufactured AlSi10Mg for use in electric motors.

Topology optimization of geometrically nonlinear structures using an evolutionary optimization method (2018)
Journal Article
Abdi, M., Ashcroft, I., & Wildman, R. (in press). Topology optimization of geometrically nonlinear structures using an evolutionary optimization method. Engineering Optimization, https://doi.org/10.1080/0305215X.2017.1418864

Iso-XFEM method is an evolutionary optimization method developed in our previous studies to enable the generation of high resolution topology optimised designs suitable for additive manufacture. Conventional approaches for topology optimization requi... Read More about Topology optimization of geometrically nonlinear structures using an evolutionary optimization method.

Effect of annealing on the microstructure and magnetic properties of soft magnetic Fe-Si produced via laser additive manufacturing (2018)
Journal Article
Garibaldi, M., Ashcroft, I., Lemke, J. N., Simonelli, M., & Hague, R. (2018). Effect of annealing on the microstructure and magnetic properties of soft magnetic Fe-Si produced via laser additive manufacturing. Scripta Materialia, 142, 121-125. https://doi.org/10.1016/j.scriptamat.2017.08.042

© 2017 Acta Materialia Inc. We investigate the effect of annealing on the properties of Fe-6.9wt% Si produced by Selective Laser Melting (SLM), a powder-bed additive manufacturing technology. Results show that annealing at 1150 °C for 1 h produces a... Read More about Effect of annealing on the microstructure and magnetic properties of soft magnetic Fe-Si produced via laser additive manufacturing.

Design optimization for an additively manufactured automotive component (2018)
Journal Article
Abdi, M., Ashcroft, I., & Wildman, R. D. (2018). Design optimization for an additively manufactured automotive component. International Journal of Powertrains, 7(1-3), https://doi.org/10.1504/IJPT.2018.090371

The aim of this paper is to investigate the design optimization and additive manufacture of automotive components. A Titanium brake pedal processed through Selective Laser Melting (SLM) is considered as a test case. Different design optimisation tech... Read More about Design optimization for an additively manufactured automotive component.

Insights into the mechanical properties of several triplyperiodic minimal surface lattice structures made by polymeradditive manufacturing (2017)
Journal Article
Maskery, I., Sturm, L., Aremu, A., Panesar, A., Williams, C., Tuck, C., …Hague, R. J. (2018). Insights into the mechanical properties of several triplyperiodic minimal surface lattice structures made by polymeradditive manufacturing. Polymer, 152, 62-71. https://doi.org/10.1016/j.polymer.2017.11.049

Three-dimensional lattices have applications across a range of fields including structural lightweighting, impact absorption and biomedicine. In this work, lattices based on triply periodic minimal surfaces were produced by polymer additive manufactu... Read More about Insights into the mechanical properties of several triplyperiodic minimal surface lattice structures made by polymeradditive manufacturing.

Targeted rework strategies for powder bed additive manufacture (2017)
Journal Article
Hirsch, M., Dryburgh, P., Catchpole-Smith, S., Patel, R., Parry, L., Sharples, S., …Clare, A. (2018). Targeted rework strategies for powder bed additive manufacture. Additive Manufacturing, 19, 127-133. https://doi.org/10.1016/j.addma.2017.11.011

A major factor limiting the adoption of powder-bed-fusion additive manufacturing for production of parts is the control of build process defects and the effect these have upon the certification of parts for structural applications. In response to thi... Read More about Targeted rework strategies for powder bed additive manufacture.

Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing (2017)
Journal Article
Panesar, A., Abdi, M., Hickman, D., & Ashcroft, I. (2018). Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing. Additive Manufacturing, 19, https://doi.org/10.1016/j.addma.2017.11.008

A number of strategies that enable lattice structures to be derived from Topology Optimisation (TO) results suitable for Additive Manufacturing (AM) are presented. The proposed strategies are evaluated for mechanical performance and assessed for AM s... Read More about Strategies for functionally graded lattice structures derived using topology optimisation for additive manufacturing.

3D reactive inkjet printing of polydimethylsiloxane (2017)
Journal Article
Sturgess, C., Tuck, C. J., Ashcroft, I. A., & Wildman, R. D. (2017). 3D reactive inkjet printing of polydimethylsiloxane. Journal of Materials Chemistry C, 5(37), 9733-9745. https://doi.org/10.1039/c7tc02412f

© 2017 The Royal Society of Chemistry. Material jetting is a process whereby liquid material can be deposited onto a substrate to solidify. Through a process of progressive additional layers, this deposition can then be used to produce 3D structures.... Read More about 3D reactive inkjet printing of polydimethylsiloxane.

3D inkjet printing of electronics using UV conversion (2017)
Journal Article
Saleh, E., Zhang, F., He, Y., Vaithilingam, J., Fernandez, J. L., Wildman, R. D., …Tuck, C. (2017). 3D inkjet printing of electronics using UV conversion. Advanced Materials Technologies, 2(10), Article 1700134. https://doi.org/10.1002/admt.201700134

The production of electronic circuits and devices is limited by current manufacturing methods that limit both the form and potentially the performance of these systems. Additive Manufacturing (AM) is a technology that has been shown to provide cross... Read More about 3D inkjet printing of electronics using UV conversion.

3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release (2017)
Journal Article
Kyobula, M., Adedeji, A., Alexander, M. R., Saleh, E., Wildman, R. D., Ashcroft, I., …Roberts, C. J. (2017). 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. Journal of Controlled Release, 261, 207-215. https://doi.org/10.1016/j.jconrel.2017.06.025

A hot melt 3D inkjet printing method with the potential to manufacture formulations in complex and adaptable geometries for the controlled loading and release of medicines is presented. This first use of a precisely controlled solvent free inkjet pri... Read More about 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release.

A Tripropylene Glycol Diacrylate-based Polymeric Support Ink for Material Jetting (2017)
Journal Article
Aboulkhair, N., He, Y., Zhang, F., Saleh, E., Vaithilingam, J., Aboulkhair, N. T., …Wildman, R. D. (2017). A Tripropylene Glycol Diacrylate-based Polymeric Support Ink for Material Jetting. Additive Manufacturing, 16, 153-161. https://doi.org/10.1016/j.addma.2017.06.001

© 2017 Support structures and materials are indispensable components in many Additive Manufacturing (AM) systems in order to fabricate complex 3D structures. For inkjet-based AM techniques (known as Material Jetting), there is a paucity of studies o... Read More about A Tripropylene Glycol Diacrylate-based Polymeric Support Ink for Material Jetting.

Calorimetric study and microstructure analysis of the order-disorder phase transformation in silicon steel built by SLM (2017)
Journal Article
Lemke, J., Simonelli, M., Garibaldi, M., Ashcroft, I., Hague, R., Vedani, M., …Tuck, C. (2017). Calorimetric study and microstructure analysis of the order-disorder phase transformation in silicon steel built by SLM. Journal of Alloys and Compounds, 722, 293-301. https://doi.org/10.1016/j.jallcom.2017.06.085

Innovative Additive Manufacturing (AM) technologies like Selective Laser Melting (SLM) could prove to be efficient for the processing of brittle silicon steel (Fe-Si) with high silicon content. This research elucidates the effects of heat-treatment o... Read More about Calorimetric study and microstructure analysis of the order-disorder phase transformation in silicon steel built by SLM.

Design framework for multifunctional additive manufacturing: coupled optimization strategy for structures with embedded functional systems (2017)
Journal Article
Panesar, A., Ashcroft, I., Brackett, D., Wildman, R. D., & Hague, R. (2017). Design framework for multifunctional additive manufacturing: coupled optimization strategy for structures with embedded functional systems. Additive Manufacturing, 16, https://doi.org/10.1016/j.addma.2017.05.009

The driver for this research is the development of multi-material additive manufacturing processes that provide the potential for multi-functional parts to be manufactured in a single operation. In order to exploit the potential benefits of this emer... Read More about Design framework for multifunctional additive manufacturing: coupled optimization strategy for structures with embedded functional systems.

Selective laser melting of aluminium alloys (2017)
Journal Article
Aboulkhair, N. T., Everitt, N. M., Maskery, I., Ashcroft, I., & Tuck, C. (2017). Selective laser melting of aluminium alloys. MRS Bulletin, 42(4), 311-319. https://doi.org/10.1557/mrs.2017.63

Metal additive manufacturing (AM) processes, such as selective laser melting, enable powdered metals to be formed into arbitrary 3D shapes. For aluminium alloys, which are desirable in many high-value applications for their low density and good mecha... Read More about Selective laser melting of aluminium alloys.

An investigation into the depth and time dependent behavior of UV cured 3D ink jet printed objects (2017)
Journal Article
Chen, X., Ashcroft, I., Tuck, C., He, Y., Hague, R. J., & Wildman, R. D. (2017). An investigation into the depth and time dependent behavior of UV cured 3D ink jet printed objects. Journal of Materials Research, 32(8), 1407-1420. https://doi.org/10.1557/jmr.2017.4

An ultra-violet (UV) curable ink jet 3D printed material was characterized by an inverse finite element modeling (IFEM) technique employing a nonlinear viscoelastic–viscoplastic (NVEVP) material constitutive model; this methodology was compared direc... Read More about An investigation into the depth and time dependent behavior of UV cured 3D ink jet printed objects.

Fractal scan strategies for selective laser melting of ‘unweldable’ nickel superalloys (2017)
Journal Article
Catchpole-Smith, S., Aboulkhair, N., Parry, L., Tuck, C., Ashcroft, I., & Clare, A. (in press). Fractal scan strategies for selective laser melting of ‘unweldable’ nickel superalloys. Additive Manufacturing, https://doi.org/10.1016/j.addma.2017.02.002

The high thermal gradients experienced during manufacture via selective laser melting commonly result in cracking of high γ/γ′ Nickel based superalloys. Such defects cannot be tolerated in applications where component integrity is of paramount import... Read More about Fractal scan strategies for selective laser melting of ‘unweldable’ nickel superalloys.

A novel approach to design lesion-specific stents for minimum recoil (2016)
Journal Article
Farhan Khan, M., Brackett, D., Ashcroft, I., Tuck, C., & Wildman, R. D. (in press). A novel approach to design lesion-specific stents for minimum recoil. Journal of Medical Devices, 11(1), Article 011001. https://doi.org/10.1115/1.4034880

Stent geometries are obtained by topology optimization for minimized compliance under different stenosis levels and plaque material types. Three levels of stenosis by cross-sectional area, i.e., 30%, 40%, and 50% and three different plaque material p... Read More about A novel approach to design lesion-specific stents for minimum recoil.

Hierarchical remeshing strategies with mesh mapping for topology optimisation (2016)
Journal Article
Panesar, A., Brackett, D., Ashcroft, I., Wildman, R. D., & Hague, R. (2017). Hierarchical remeshing strategies with mesh mapping for topology optimisation. International Journal for Numerical Methods in Engineering, https://doi.org/10.1002/nme.5488

This work investigates the use of hierarchical mesh decomposition strategies for topology optimisation using bi-directional evolutionary structural optimisation algorithm. The proposed method uses a dual mesh system that decouples the design variable... Read More about Hierarchical remeshing strategies with mesh mapping for topology optimisation.

A voxel-based method of constructing and skinning conformal and functionally graded lattice structures suitable for additive manufacturing (2016)
Journal Article
Aremu, A., Brennan-Craddock, J., Panesar, A., Ashcroft, I., Hague, R. J., Wildman, R. D., & Tuck, C. (in press). A voxel-based method of constructing and skinning conformal and functionally graded lattice structures suitable for additive manufacturing. Additive Manufacturing, 13, https://doi.org/10.1016/j.addma.2016.10.006

Additive Manufacturing (AM) enables the production of geometrically complex parts that are difficult to manufacture by other means. However, conventional CAD systems are limited in the representation of such parts. This issue is exacerbated when latt... Read More about A voxel-based method of constructing and skinning conformal and functionally graded lattice structures suitable for additive manufacturing.

A combined inverse finite element – elastoplastic modelling method to simulate the size-effect in nanoindentation and characterise materials from the nano to micro-scale (2016)
Journal Article
Chen, X., Ashcroft, I., Wildman, R. D., & Tuck, C. (2017). A combined inverse finite element – elastoplastic modelling method to simulate the size-effect in nanoindentation and characterise materials from the nano to micro-scale. International Journal of Solids and Structures, 104-105, 25-34. https://doi.org/10.1016/j.ijsolstr.2016.11.004

Material properties such as hardness can be dependent on the size of the indentation load when that load is small, a phenomenon known as the indentation size effect (ISE). In this work an inverse finite element method (IFEM) is used to investigate th... Read More about A combined inverse finite element – elastoplastic modelling method to simulate the size-effect in nanoindentation and characterise materials from the nano to micro-scale.

3D inkjet-printed UV-curable inks for multi-functional electromagnetic applications (2016)
Journal Article
Saleh, E., Woolliams, P., Clarke, B., Gregory, A., Greedy, S., Smartt, C., …Tuck, C. (2017). 3D inkjet-printed UV-curable inks for multi-functional electromagnetic applications. Additive Manufacturing, 13, 143-148. https://doi.org/10.1016/j.addma.2016.10.002

Inkjet printing of multiple materials is usually processed in multiple steps due to various jetting and curing/sintering conditions. In this paper we report on the development of all inkjet-printed UV-curable electromagnetic responsive inks in a sing... Read More about 3D inkjet-printed UV-curable inks for multi-functional electromagnetic applications.

A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting (2016)
Journal Article
Maskery, I., Aboulkhair, N., Aremu, A., Tuck, C., Ashcroft, I., Wildman, R., & Hague, R. (2016). A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting. Materials Science and Engineering: A, 670, 264-274. https://doi.org/10.1016/j.msea.2016.06.013

Metal components with applications across a range of industrial sectors can be manufactured by selective laser melting (SLM). A particular strength of SLM is its ability to manufacture components incorporating periodic lattice structures not realisab... Read More about A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting.

Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation (2016)
Journal Article
Parry, L., Ashcroft, I., & Wildman, R. D. (2016). Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation. Additive Manufacturing, 12(A), https://doi.org/10.1016/j.addma.2016.05.014

Selective laser melting (SLM) is an attractive technology, enabling the manufacture of customised, complex metallic designs, with minimal wastage. However, uptake by industry is currently impeded by several technical barriers, such as the control of... Read More about Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation.

Improving the fatigue behaviour of a selectively laser melted aluminium alloy: Influence of heat treatment and surface quality (2016)
Journal Article
Aboulkhair, N. T., Maskery, I., Tuck, C., Ashcroft, I., & Everitt, N. M. (2016). Improving the fatigue behaviour of a selectively laser melted aluminium alloy: Influence of heat treatment and surface quality. Materials and Design, 104, 174-182. https://doi.org/10.1016/j.matdes.2016.05.041

Selective laser melting (SLM) is being widely utilised to fabricate intricate structures used in various industries. Widening the range of applications that can benefit from such promising technology requires validating SLM parts in load bearing appl... Read More about Improving the fatigue behaviour of a selectively laser melted aluminium alloy: Influence of heat treatment and surface quality.

The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment (2016)
Journal Article
Aboulkhair, N. T., Maskery, I., Tuck, C., Ashcroft, I., & Everitt, N. M. (2016). The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment. Materials Science and Engineering: A, 667, 139-146. https://doi.org/10.1016/j.msea.2016.04.092

Selective laser melting (SLM) of aluminium is of research interest because of its potential benefits to high value manufacturing applications in the aerospace and automotive industries. In order to demonstrate the credibility of SLM Al parts, their m... Read More about The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment.

Metallurgy of high-silicon steel parts produced using selective laser melting (2016)
Journal Article
Garibaldi, M., Ashcroft, I., Simonelli, M., & Hague, R. (2016). Metallurgy of high-silicon steel parts produced using selective laser melting. Acta Materialia, 110, https://doi.org/10.1016/j.actamat.2016.03.037

The metallurgy of high-silicon steel (6.9%wt.Si) processed using Selective Laser Melting (SLM) is presented for the first time in this study. High-silicon steel has great potential as a soft magnetic alloy, but its employment has been limited due to... Read More about Metallurgy of high-silicon steel parts produced using selective laser melting.

An investigation into reinforced and functionally graded lattice structures (2016)
Journal Article
Maskery, I., Hussey, A., Panesar, A., Aremu, A., Tuck, C., Ashcroft, I., & Hague, R. J. (in press). An investigation into reinforced and functionally graded lattice structures. Journal of Cellular Plastics, https://doi.org/10.1177/0021955X16639035

Lattice structures are regarded as excellent candidates for use in lightweight energy absorbing applications, such as crash protection. In this paper we investigate the crushing behaviour, mechanical properties and energy absorption of lattices made... Read More about An investigation into reinforced and functionally graded lattice structures.

The thermo-mechanical degradation of ethylene vinyl acetate used as a solar panel adhesive and encapsulant (2016)
Journal Article
Badiee, A., Ashcroft, I., & Wildman, R. D. (2016). The thermo-mechanical degradation of ethylene vinyl acetate used as a solar panel adhesive and encapsulant. International Journal of Adhesion and Adhesives, 68, 212-218. https://doi.org/10.1016/j.ijadhadh.2016.03.008

© 2016 The Authors. Published by Elsevier Ltd. The thermal ageing of an ethylene-vinyl acetate (EVA) polymer used as an adhesive and encapsulant in a photovoltaic module has been investigated. The EVA is used to bond the silicon solar cells to the fr... Read More about The thermo-mechanical degradation of ethylene vinyl acetate used as a solar panel adhesive and encapsulant.

Surface microstructuring to modify wettability for 3D printing of nano-filled inks (2016)
Journal Article
Vafaei, S., Tuck, C., Ashcroft, I., & Wildman, R. D. (2016). Surface microstructuring to modify wettability for 3D printing of nano-filled inks. Chemical Engineering Research and Design, 109, https://doi.org/10.1016/j.cherd.2016.02.004

This paper investigates the effect of surface wettability on the cross-sectional profiles of printed nanofluid inks which can have a significant role on conductivity of printed lines that are used in the production of printed electronics. Glass subst... Read More about Surface microstructuring to modify wettability for 3D printing of nano-filled inks.

Shape complexity and process energy consumption in electron beam melting: a case of something for nothing in additive manufacturing? (2016)
Journal Article
Baumers, M., Tuck, C., Wildman, R. D., Ashcroft, I., & Hague, R. J. (in press). Shape complexity and process energy consumption in electron beam melting: a case of something for nothing in additive manufacturing?. Journal of Industrial Ecology, https://doi.org/10.1111/jiec.12397

Additive manufacturing (AM) technology is capable of building up component geometry in a layer-by-layer process, entirely without tools, molds, or dies. One advantage of the approach is that it is capable of efficiently creating complex product geome... Read More about Shape complexity and process energy consumption in electron beam melting: a case of something for nothing in additive manufacturing?.

Nanoindentation shows uniform local mechanical properties across melt pools and layers produced by selective laser melting of AlSi10Mg alloy (2016)
Journal Article
Everitt, N. M., Aboulkhair, N. T., Maskery, I., Tuck, C., & Ashcroft, I. (2016). Nanoindentation shows uniform local mechanical properties across melt pools and layers produced by selective laser melting of AlSi10Mg alloy. https://doi.org/10.5185/amlett.2016.6171

Single track and single layer AlSi10Mg has been produced by selective laser melting (SLM) of alloy powder on a AlSi12 cast substrate. The SLM technique produced a cellular-dendritic ultra-fined grained microstructure. Chemical composition mapping an... Read More about Nanoindentation shows uniform local mechanical properties across melt pools and layers produced by selective laser melting of AlSi10Mg alloy.

Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using x-ray computed tomography (2016)
Journal Article
Maskery, I., Aboulkhair, N., Corfield, M., Tuck, C., Clare, A., Leach, R. K., …Hague, R. J. (2016). Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using x-ray computed tomography. Materials Characterization, 111, https://doi.org/10.1016/j.matchar.2015.12.001

We used X-ray computed tomography (CT), microscopy and hardness measurements to study Al–Si10–Mg produced by selective laser melting (SLM). Specimens were subject to a series of heat treatments including annealing and precipitation hardening. The spe... Read More about Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using x-ray computed tomography.

On the formation of AlSi10Mg single tracks and layers in selective laser melting: Microstructure and nano-mechanical properties (2015)
Journal Article
Aboulkhair, N. T., Maskery, I., Tuck, C., Ashcroft, I., & Everitt, N. M. (2016). On the formation of AlSi10Mg single tracks and layers in selective laser melting: Microstructure and nano-mechanical properties. Journal of Materials Processing Technology, 230, 88-98. https://doi.org/10.1016/j.jmatprotec.2015.11.016

Selective laser melting (SLM) is a relatively new manufacturing technique that can be used to process a range of materials. Aluminum alloys are potential candidates for SLM but are more difficult to process than the titanium alloys more commonly used... Read More about On the formation of AlSi10Mg single tracks and layers in selective laser melting: Microstructure and nano-mechanical properties.

Design Framework for Multifunctional Additive Manufacturing: Placement and Routing of Three-Dimensional Printed Circuit Volumes (2015)
Journal Article
Panesar, A., Brackett, D., Ashcroft, I., Wildman, R. D., & Hague, R. J. (2015). Design Framework for Multifunctional Additive Manufacturing: Placement and Routing of Three-Dimensional Printed Circuit Volumes. Journal of Mechanical Design, 137(11), Article 111414. https://doi.org/10.1115/1.4030996

© 2015 by ASME. A framework for the design of additively manufactured (AM) multimaterial parts with embedded functional systems is presented (e.g., structure with electronic/electrical components and associated conductive paths). Two of the key stran... Read More about Design Framework for Multifunctional Additive Manufacturing: Placement and Routing of Three-Dimensional Printed Circuit Volumes.

Fibre architecture design of 3D woven composite with genetic algorithms: a unit cell based optimisation framework and performance assessment (2015)
Conference Proceeding
Zeng, X., Long, A. C., Ashcroft, I., & Potluri, P. (2015). Fibre architecture design of 3D woven composite with genetic algorithms: a unit cell based optimisation framework and performance assessment.

There are vast possibilities in fibre architecture design of 3D woven reinforcement. This paper considers the application of Genetic Algorithm (GA) in 3D woven composites optimisation. A set of real and integral variables, representing 3D fibre archi... Read More about Fibre architecture design of 3D woven composite with genetic algorithms: a unit cell based optimisation framework and performance assessment.

On the Precipitation Hardening of Selective Laser Melted AlSi10Mg (2015)
Journal Article
Tuck, C., Aboulkhair, N. T., Tuck, C., Ashcroft, I., Maskery, I., & Everitt, N. M. (2015). On the Precipitation Hardening of Selective Laser Melted AlSi10Mg. Metallurgical and Materials Transactions A, 46(8), 3337-3341. https://doi.org/10.1007/s11661-015-2980-7

Precipitation hardening of selective laser melted AlSi10Mg was investigated in terms of solution heat treatment and aging duration. The influence on the microstructure and hardness was established, as was the effect on the size and density of Si part... Read More about On the Precipitation Hardening of Selective Laser Melted AlSi10Mg.

Mechanical Properties of Ti-6Al-4V Selectively Laser Melted Parts with Body-Centred-Cubic Lattices of Varying cell size (2015)
Journal Article
Maskery, I., Aremu, A., Simonelli, M., Tuck, C., Wildman, R., Ashcroft, I., & Hague, R. (2015). Mechanical Properties of Ti-6Al-4V Selectively Laser Melted Parts with Body-Centred-Cubic Lattices of Varying cell size. Experimental Mechanics, 55(7), 1261-1272. https://doi.org/10.1007/s11340-015-0021-5

Significant weight savings in parts can be made through the use of additive manufacture (AM), a process which enables the construction of more complex geometries, such as functionally graded lattices, than can be achieved conventionally. The existing... Read More about Mechanical Properties of Ti-6Al-4V Selectively Laser Melted Parts with Body-Centred-Cubic Lattices of Varying cell size.

A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4V (2015)
Journal Article
Hague, R., Tuck, C., Simonelli, M., Tuck, C., Aboulkhair, N. T., Maskery, I., …Hague, R. J. (2015). A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4V. Metallurgical and Materials Transactions A, 46(9), 3842-3851. https://doi.org/10.1007/s11661-015-2882-8

The creation of an object by selective laser melting (SLM) occurs by melting contiguous areas of a powder bed according to a corresponding digital model. It is therefore clear that the success of this metal Additive Manufacturing (AM) technology reli... Read More about A Study on the Laser Spatter and the Oxidation Reactions During Selective Laser Melting of 316L Stainless Steel, Al-Si10-Mg, and Ti-6Al-4V.

Nano-hardness and microstructure of selective laser melted AlSi10Mg scan tracks (2015)
Conference Proceeding
Aboulkhair, N. T., Tuck, C., Maskery, I., Ashcroft, I., & Everitt, N. (2015). Nano-hardness and microstructure of selective laser melted AlSi10Mg scan tracks. In Industrial Laser Applications Symposium (ILAS 2015). https://doi.org/10.1117/12.2190015

Selective laser melting (SLM) of aluminium alloys faces more challenges than other ongoing alloys such as stainless steels and titanium alloys because of the material’s properties. It is important to study single scan tracks if high density large par... Read More about Nano-hardness and microstructure of selective laser melted AlSi10Mg scan tracks.

Reducing porosity in AlSi10Mg parts processed by selective laser melting (2014)
Journal Article
Aboulkhair, N. T., Everitt, N. M., Ashcroft, I., & Tuck, C. (2014). Reducing porosity in AlSi10Mg parts processed by selective laser melting. Additive Manufacturing, 1-4, 77-86. https://doi.org/10.1016/j.addma.2014.08.001

Selective laser melting (SLM) is widely gaining popularity as an alternative manufacturing technique for complex and customized parts. SLM is a near net shape process with minimal post processing machining required dependent upon final application. T... Read More about Reducing porosity in AlSi10Mg parts processed by selective laser melting.

Modelling damage and failure in adhesive joints using a combined XFEM-cohesive element methodology (2014)
Journal Article
Mubashar, A., Ashcroft, I., & Crocombe, A. D. (2014). Modelling damage and failure in adhesive joints using a combined XFEM-cohesive element methodology. Journal of Adhesion, 90(8), 682-697. doi:10.1080/00218464.2013.826580

In recent years, cohesive elements based on the cohesive zone model (CZM) have been increasingly used within finite element analyses of adhesively bonded joints to predict failure. The cohesive element approach has advantages over fracture mechanics... Read More about Modelling damage and failure in adhesive joints using a combined XFEM-cohesive element methodology.

Evolutionary topology optimization using the extended finite element method and isolines (2013)
Journal Article
Abdi, M., Wildman, R., & Ashcroft, I. (2014). Evolutionary topology optimization using the extended finite element method and isolines. Engineering Optimization, 46(5), 628-647. https://doi.org/10.1080/0305215X.2013.791815

This study presents a new algorithm for structural topological optimization of two-dimensional continuum structures by combining the extended finite element method (X-FEM) with an evolutionary optimization algorithm. Taking advantage of an isoline de... Read More about Evolutionary topology optimization using the extended finite element method and isolines.