Salom� Sanchez
Powder Bed Fusion of nickel-based superalloys: A review
Sanchez, Salom�; Xu, Zhengkai; Smith, Peter; Gaspard, Gabriele; Hyde, Christopher J.; Ashcroft, Ian A.; Wits, Wessel W.; Chen, Hao; Clare, Adam T.
Authors
Zhengkai Xu
Peter Smith
Gabriele Gaspard
Dr CHRISTOPHER HYDE CHRISTOPHER.HYDE@NOTTINGHAM.AC.UK
Associate Professor
IAN ASHCROFT IAN.ASHCROFT@NOTTINGHAM.AC.UK
Professor of Mechanics of Solids
Wessel W. Wits
Hao Chen
ADAM CLARE adam.clare@nottingham.ac.uk
Professor of Manufacturing Engineering
Abstract
Powder Bed Fusion (PBF) techniques constitute a family of Additive Manufacturing (AM) processes, which are characterised by high design flexibility and no tooling requirement. This makes PBF techniques attractive to many modern manufacturing sectors (e.g. aerospace, defence, energy and automotive) where some materials, such as Nickel-based superalloys, cannot be easily processed using conventional subtractive techniques. Nickel-based superalloys are crucial materials in modern engineering and underpin the performance of many advanced mechanical systems. Their physical properties (high mechanical integrity at high temperature) make them difficult to process via traditional techniques. Consequently, manufacture of nickel-based superalloys using PBF platforms has attracted significant attention. To permit a wider application, a deep understanding of their mechanical behaviour and relation to process needs to be achieved. The motivation for this paper is to provide a comprehensive review of the mechanical properties of PBF nickel-based superalloys and how process parameters affect these, and to aid practitioners in identifying the shortcomings and the opportunities in this field. Therefore, this paper aims to review research contributions regarding the microstructure and mechanical properties of nickel-based superalloys, manufactured using the two principle PBF techniques: Laser Powder Bed Fusion (LPBF) and Electron Beam Melting (EBM). The ‘target’ microstructures are introduced alongside the characteristics of those produced by PBF process, followed by an overview of the most used building processes, as well as build quality inspection techniques. A comprehensive evaluation of the mechanical properties, including tensile strength, hardness, shear strength, fatigue resistance, creep resistance and fracture toughness of PBF nickel-based superalloys are analysed. This work concludes with summary tables for data published on these properties serving as a quick reference to scholars. Characteristic process factors influencing functional performance are also discussed and compared throughout for the purpose of identifying research opportunities and directing the research community toward the end goal of achieving part integrity that extends beyond static components only.
Citation
Sanchez, S., Xu, Z., Smith, P., Gaspard, G., Hyde, C. J., Ashcroft, I. A., …Clare, A. T. (2021). Powder Bed Fusion of nickel-based superalloys: A review. International Journal of Machine Tools and Manufacture, 165, Article 103729. https://doi.org/10.1016/j.ijmachtools.2021.103729
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 7, 2021 |
Online Publication Date | Apr 17, 2021 |
Publication Date | Jun 1, 2021 |
Deposit Date | Apr 13, 2021 |
Publicly Available Date | Apr 17, 2021 |
Journal | International Journal of Machine Tools and Manufacture |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 165 |
Article Number | 103729 |
DOI | https://doi.org/10.1016/j.ijmachtools.2021.103729 |
Public URL | https://nottingham-repository.worktribe.com/output/5463143 |
Publisher URL | https://www.sciencedirect.com/science/article/pii/S0890695521000390 |
Files
1-s2.0-S0890695521000390-main
(55 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
You might also like
Surface microstructuring to modify wettability for 3D printing of nano-filled inks
(2016)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search