Skip to main content

Research Repository

Advanced Search

Professor MORGAN ALEXANDER's Outputs (8)

Monosaccharide coating modulate the intracellular trafficking of gold nanoparticles in dendritic cells (2024)
Journal Article
Alobaid, M. A., Richards, S.-J., Alexander, M. R., Gibson, M. I., & Ghaemmaghami, A. M. (2024). Monosaccharide coating modulate the intracellular trafficking of gold nanoparticles in dendritic cells. Materials Today Bio, 29, Article 101371. https://doi.org/10.1016/j.mtbio.2024.101371

Dendritic cells (DCs) have emerged as a promising target for drug delivery and immune modulation due to their pivotal role in initiating the adaptive immune response. Gold nanoparticles (AuNPs) have garnered interest as a platform for targeted drug d... Read More about Monosaccharide coating modulate the intracellular trafficking of gold nanoparticles in dendritic cells.

Discovery and Computational Modelling of Adsorbent Polymers that Effectively Immobilize SARS-CoV-2 with Potential Practical Applications (2024)
Journal Article
Xue, X., Duncan, J. D., Coleman, C. M., Contreas, L., Blackburn, C., Vivero-Lopez, M., Williams, P. M., Ball, J. K., Alexander, C., & Alexander, M. R. (2024). Discovery and Computational Modelling of Adsorbent Polymers that Effectively Immobilize SARS-CoV-2 with Potential Practical Applications. Cell Reports Physical Science, 5(9), Article 102204. https://doi.org/10.1016/j.xcrp.2024.102204

Viral translocation is considered a common way for respiratory viruses to spread and contaminate the surrounding environment. Thus, the discovery of non-eluting polymers that immobilize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) upo... Read More about Discovery and Computational Modelling of Adsorbent Polymers that Effectively Immobilize SARS-CoV-2 with Potential Practical Applications.

Cannabidiol and fluorinated derivative anti-cancer properties against glioblastoma multiforme cell lines, and synergy with imidazotetrazine agents (2024)
Journal Article
Brookes, A., Kindon, N., Scurr, D. J., Alexander, M. R., Gershkovich, P., & Bradshaw, T. (2024). Cannabidiol and fluorinated derivative anti-cancer properties against glioblastoma multiforme cell lines, and synergy with imidazotetrazine agents. BJC Reports, 2, Article 67. https://doi.org/10.1038/s44276-024-00088-0

Background
Glioblastoma multiforme (GBM) is an aggressive cancer with poor prognosis, partly due to resistance to the standard chemotherapy treatment, temozolomide (TMZ). Phytocannabinoid cannabidiol (CBD) has exhibited anti-cancer effects against G... Read More about Cannabidiol and fluorinated derivative anti-cancer properties against glioblastoma multiforme cell lines, and synergy with imidazotetrazine agents.

Cannabidiol and fluorinated derivative anti-cancer properties against glioblastoma multiforme cell lines, and synergy with imidazotetrazine agents (2024)
Journal Article
Brookes, A., Kindon, N., Scurr, D., Alexander, M., Gershkovich, P., & BRADSHAW, T. (2024). Cannabidiol and fluorinated derivative anti-cancer properties against glioblastoma multiforme cell lines, and synergy with imidazotetrazine agents. British Journal of Cancer, 2, Article 67. https://doi.org/10.1038/s44276-024-00088-0

Background
Glioblastoma multiforme (GBM) is an aggressive cancer with poor prognosis, partly due to resistance to the standard chemotherapy treatment, temozolomide (TMZ). Phytocannabinoid cannabidiol (CBD) has exhibited anti-cancer effects against G... Read More about Cannabidiol and fluorinated derivative anti-cancer properties against glioblastoma multiforme cell lines, and synergy with imidazotetrazine agents.

Computer Vision for Substrate Detection in High-Throughput Biomaterial Screens Using Bright-Field Microscopy (2024)
Journal Article
Owen, R., Nasir, A., H. Amer, M., Nie, C., Xue, X., Burroughs, L., Denning, C., D. Wildman, R., A. Khan, F., R. Alexander, M., & R. A. J. Rose, F. (2024). Computer Vision for Substrate Detection in High-Throughput Biomaterial Screens Using Bright-Field Microscopy. Advanced Intelligent Systems, Article 2400573. https://doi.org/10.1002/aisy.202400573

High-throughput screening (HTS) can be used when ab initio information is unavailable for rational design of new materials, generating data on properties such as chemistry and topography that control cell behavior. Biomaterial screens are typically f... Read More about Computer Vision for Substrate Detection in High-Throughput Biomaterial Screens Using Bright-Field Microscopy.

Metabolomic and Proteomic Analysis of ApoE4-Carrying H4 Neuroglioma Cells in Alzheimer’s Disease Using OrbiSIMS and LC-MS/MS (2024)
Journal Article
Lu, L., Kotowska, A. M., Kern, S., Fang, M., Rudd, T. R., Alexander, M. R., Scurr, D. J., & Zhu, Z. (2024). Metabolomic and Proteomic Analysis of ApoE4-Carrying H4 Neuroglioma Cells in Alzheimer’s Disease Using OrbiSIMS and LC-MS/MS. Analytical Chemistry, https://doi.org/10.1021/acs.analchem.4c01201

Growing clinical evidence reveals that systematic molecular alterations in the brain occur 20 years before the onset of AD pathological features. Apolipoprotein E4 (ApoE4) is one of the most significant genetic risk factors for Alzheimer’s disease (A... Read More about Metabolomic and Proteomic Analysis of ApoE4-Carrying H4 Neuroglioma Cells in Alzheimer’s Disease Using OrbiSIMS and LC-MS/MS.

Spatially resolved molecular analysis of host response to medical device implantation using the 3D OrbiSIMS highlights a critical role for lipids (2024)
Journal Article
Suvannapruk, W., Fisher, L. E., Luckett, J. C., Edney, M. K., Kotowska, A. M., Kim, D. H., Scurr, D. J., Ghaemmaghami, A. M., & Alexander, M. R. (2024). Spatially resolved molecular analysis of host response to medical device implantation using the 3D OrbiSIMS highlights a critical role for lipids. Advanced Science, 11(15), Article 2306000. https://doi.org/10.1002/advs.202306000

A key goal for implanted medical devices is that they do not elicit a detrimental immune response. Macrophages play critical roles in the modulation of the host immune response and are the cells responsible for persistent inflammatory reactions to im... Read More about Spatially resolved molecular analysis of host response to medical device implantation using the 3D OrbiSIMS highlights a critical role for lipids.

Polymer-Coated Urinary Catheter Reduces Biofilm Formation and Biomineralization: A First-in-Man, Prospective Pilot Study (2024)
Journal Article
Kalenderski, K., Dubern, J.-F., Lewis-Lloyd, C., Jeffery, N., Heeb, S., Irvine, D. J., Sloan, T. J., Birch, B., Andrich, D., Humes, D., Alexander, M. R., & Williams, P. (2024). Polymer-Coated Urinary Catheter Reduces Biofilm Formation and Biomineralization: A First-in-Man, Prospective Pilot Study. Journal of Urology Open PLus, 2(1), Article e00005. https://doi.org/10.1097/JU9.0000000000000097

Purpose: Biofilm formation and biomineralization on urinary catheters may cause severe complications including infection and obstruction. Here, we describe an in vitro evaluation and prospective pilot clinical study of a silicone catheter coated with... Read More about Polymer-Coated Urinary Catheter Reduces Biofilm Formation and Biomineralization: A First-in-Man, Prospective Pilot Study.