Skip to main content

Research Repository

Advanced Search

Dr HABIBU HUSSAINI's Outputs (9)

A Low-Complexity Artificial Neural Network-Based Optimal Droop Gain Design Strategy for DC Microgrids Onboard the More Electric Aircraft (2023)
Journal Article
Hussaini, H., Yang, T., Bai, G., Urrutia-Ortiz, M., & Bozhko, S. (2024). A Low-Complexity Artificial Neural Network-Based Optimal Droop Gain Design Strategy for DC Microgrids Onboard the More Electric Aircraft. IEEE Transactions on Transportation Electrification, 10(3), 7310-7327. https://doi.org/10.1109/TTE.2023.3333270

This article proposes a new droop control design method based on a “reversed data training” of artificial neural network (ANN). Conventionally, after data collection, the ANN is used for forward mapping the control variables (inputs) and system respo... Read More about A Low-Complexity Artificial Neural Network-Based Optimal Droop Gain Design Strategy for DC Microgrids Onboard the More Electric Aircraft.

Artificial Intelligence-Based Hierarchical Control Design for Current Sharing and Voltage Restoration in DC Microgrid of the More Electric Aircraft (2023)
Journal Article
Hussaini, H., Yang, T., Bai, G., Urrutia-Ortiz, M., & Bozhko, S. (2024). Artificial Intelligence-Based Hierarchical Control Design for Current Sharing and Voltage Restoration in DC Microgrid of the More Electric Aircraft. IEEE Transactions on Transportation Electrification, 10(1), 566-582. https://doi.org/10.1109/tte.2023.3289773

In the conventional droop control method employed in the primary control layer, there is an inherent tradeoff between current-sharing accuracy and voltage regulation. Consequently, to achieve both accurate current sharing and maintain the bus voltage... Read More about Artificial Intelligence-Based Hierarchical Control Design for Current Sharing and Voltage Restoration in DC Microgrid of the More Electric Aircraft.

Optimal Droop Control Design Using Artificial Intelligent Techniques for Electric Power Systems of More-Electric Aircraft (2023)
Journal Article
Hussaini, H., Yang, T., Gao, Y., Wang, C., Urrutia, M., & Bozhko, S. (2024). Optimal Droop Control Design Using Artificial Intelligent Techniques for Electric Power Systems of More-Electric Aircraft. IEEE Transactions on Transportation Electrification, 10(1), 2192-2206. https://doi.org/10.1109/tte.2023.3271763

The design of the droop coefficient is one of the challenges for the droop control of converters, as it plays a key role in enhancing the performance of the droop control method. This article proposes an artificial neural network (ANN) based techniqu... Read More about Optimal Droop Control Design Using Artificial Intelligent Techniques for Electric Power Systems of More-Electric Aircraft.

Droop Coefficient Design and Optimization Using Genetic Algorithm-A Case Study of the More Electric Aircraft DC Microgrid (2022)
Presentation / Conference Contribution
Hussaini, H., Yang, T., Gao, Y., Wang, C., Bai, G., & Bozhko, S. (2022, October). Droop Coefficient Design and Optimization Using Genetic Algorithm-A Case Study of the More Electric Aircraft DC Microgrid. Presented at IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium

The droop control method is usually employed in the DC microgrids to share the load current demand among multiple sources due to its advantage of being independent of a communication network. However, the performance of the droop control method is af... Read More about Droop Coefficient Design and Optimization Using Genetic Algorithm-A Case Study of the More Electric Aircraft DC Microgrid.

Inverse application of artificial intelligence for the control of power converters (2022)
Journal Article
Gao, Y., Wang, S., Hussaini, H., Yang, T., Dragicevic, T., Bozhko, S., Wheeler, P., & Vazquez, S. (2023). Inverse application of artificial intelligence for the control of power converters. IEEE Transactions on Power Electronics, 38(2), 1535 - 1548. https://doi.org/10.1109/tpel.2022.3209093

This article proposes a novel application method, inverse application of artificial intelligence (IAAI) for the control of power electronic converter systems. The proposed method can give the desired control coefficients/references in a simple way be... Read More about Inverse application of artificial intelligence for the control of power converters.

Inverse Application of Artificial Intelligence for the Control of Power Converters (2022)
Journal Article
Gao, Y., Wang, S., Hussaini, H., Yang, T., Dragicevic, T., Bozhko, S., Wheeler, P., & Vazquez, S. (2023). Inverse Application of Artificial Intelligence for the Control of Power Converters. IEEE Transactions on Power Electronics, 38(2), 1535-1548. https://doi.org/10.1109/TPEL.2022.3209093

This article proposes a novel application method, inverse application of artificial intelligence (IAAI) for the control of power electronic converter systems. The proposed method can give the desired control coefficients/references in a simple way be... Read More about Inverse Application of Artificial Intelligence for the Control of Power Converters.

Efficiency Focused Energy Management Strategy Based on Optimal Droop Gain Design for More Electric Aircraft (2022)
Journal Article
Mohamed, M. A., Yeoh, S. S., Atkin, J., Hussaini, H., & Bozhko, S. (2022). Efficiency Focused Energy Management Strategy Based on Optimal Droop Gain Design for More Electric Aircraft. IEEE Transactions on Transportation Electrification, 8, 4205-4218. https://doi.org/10.1109/tte.2022.3159731

Due to the substantial increase of the number of electrically-driven systems on-board More Electric Aircraft (MEA), the on-board Electric Power Systems (EPS) are becoming more and more complex. Therefore, there is a need to develop a control strategy... Read More about Efficiency Focused Energy Management Strategy Based on Optimal Droop Gain Design for More Electric Aircraft.

Using DC-DC Converters as Active Harmonic Suppression Device for More Electric Aircraft Applications (2021)
Journal Article
Wang, C., Yang, T., Hussaini, H., & Bozhko, S. (2022). Using DC-DC Converters as Active Harmonic Suppression Device for More Electric Aircraft Applications. IEEE Transactions on Industrial Electronics, 69(7), 6508-6518. https://doi.org/10.1109/tie.2021.3099239

Harmonics generated from power electronic converters will impose significant power quality challenges to the electric grid onboard future aircraft. In this article, we propose an innovative modulation scheme that enables using a buck-boost dc-dc conv... Read More about Using DC-DC Converters as Active Harmonic Suppression Device for More Electric Aircraft Applications.

Modeling and control of DC grids within more-electric aircraft (2021)
Book Chapter
Wang, C., Hussaini, H., Gao, F., & Yang, T. (2021). Modeling and control of DC grids within more-electric aircraft. In A. Garcés (Ed.), Modeling, Operation, and Analysis of DC Grids: From High Power DC Transmission to DC Microgrids (337-366). Academic Press. https://doi.org/10.1016/b978-0-12-822101-3.00018-6

This chapter mainly discusses the DC microgrids for aerospace application. The more-electric aircraft is the major trend in aerospace industry. Many functions, which were conventionally driven by hydraulic, pneumatic, and mechanical power, are being... Read More about Modeling and control of DC grids within more-electric aircraft.