Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Computationally driven design of an artificial metalloenzyme using supramolecular anchoring strategies of iridium complexes to alcohol dehydrogenase (2021)
Journal Article
Martins, F., Pordea, A., & Jäger, C. M. (2021). Computationally driven design of an artificial metalloenzyme using supramolecular anchoring strategies of iridium complexes to alcohol dehydrogenase. Faraday Discussions, 234, 315-335. https://doi.org/10.1039/d1fd00070e

Artificial metalloenzymes (ArMs) confer non-biological reactivities to biomolecules, whilst taking advantage of the biomolecular architecture in terms of their selectivity and renewable origin. In particular, the design of ArMs by the supramolecular... Read More about Computationally driven design of an artificial metalloenzyme using supramolecular anchoring strategies of iridium complexes to alcohol dehydrogenase.

Oxidation of cadaverine by putrescine oxidase from Rhodococcus erythropolis (2021)
Journal Article
Anyanwu, V. E., Hall, S. J., Stephens, G., & Pordea, A. (2021). Oxidation of cadaverine by putrescine oxidase from Rhodococcus erythropolis. Journal of Chemical Technology and Biotechnology, 96(10), 2950-2955. https://doi.org/10.1002/jctb.6851

BACKGROUND Putrescine oxidase (EC 1.4.3.10) is of interest for the microbial production of unsubstituted platform nitrogen (N-)heterocycles, because it only requires inexpensive oxygen as co-substrate. Putrescine oxidase from Rhodococcus erythropoli... Read More about Oxidation of cadaverine by putrescine oxidase from Rhodococcus erythropolis.

Design of artificial metalloenzymes for the reduction of nicotinamide cofactors (2021)
Journal Article
Basle, M., Padley, H. A., Martins, F. L., Winkler, G. S., Jäger, C. M., & Pordea, A. (2021). Design of artificial metalloenzymes for the reduction of nicotinamide cofactors. Journal of Inorganic Biochemistry, 220, Article 111446. https://doi.org/10.1016/j.jinorgbio.2021.111446

Artificial metalloenzymes result from the insertion of a catalytically active metal complex into a biological scaffold, generally a protein devoid of other catalytic functionalities. As such, their design requires efforts to engineer substrate bindin... Read More about Design of artificial metalloenzymes for the reduction of nicotinamide cofactors.