Skip to main content

Research Repository

Advanced Search

All Outputs (2)

A minimally invasive optical trapping system to understand cellular interactions at onset of an immune response (2017)
Journal Article
Glass, D. G., McAlinden, N., Millington, O. R., & Wright, A. J. (2017). A minimally invasive optical trapping system to understand cellular interactions at onset of an immune response. PLoS ONE, 12(12), Article e0188581. https://doi.org/10.1371/journal.pone.0188581

T-cells and antigen presenting cells are an essential part of the adaptive immune response system and how they interact is crucial in how the body effectively fights infection or responds to vaccines. Much of the experimental work studying interactio... Read More about A minimally invasive optical trapping system to understand cellular interactions at onset of an immune response.

Engineering of hybrid photonic-plasmonic devices for enhanced light-matter interactions (2017)
Book Chapter
Mossayebi, M., Bellanca, G., Parini, A., Wright, A. J., & Larkins, E. C. (2017). Engineering of hybrid photonic-plasmonic devices for enhanced light-matter interactions. In A. Agrawal, T. Benson, R. De La Rue, & G. Wurtz (Eds.), Recent Trends in Computational Photonics, 369-390. Springer. doi:10.1007/978-3-319-55438-9_13

In this chapter, we focus on the design and characteristics of a hybrid photonic-plasmonic nanoresonator using 3D finite-difference time-domain simulations. This structure is capable of localization of high intensity light in a subwavelength hotspot,... Read More about Engineering of hybrid photonic-plasmonic devices for enhanced light-matter interactions.