Skip to main content

Research Repository

Advanced Search

All Outputs (43)

Asynchronous learning-based output feedback sliding mode control for semi-Markov jump systems: a descriptor approach (2024)
Journal Article
Wu, Z., Zhao, Y., Li, F., Yang, T., Shi, Y., & Gui, W. (2024). Asynchronous learning-based output feedback sliding mode control for semi-Markov jump systems: a descriptor approach. IEEE/CAA Journal of Automatica Sinica, 11(6), 1358–1369

This paper presents an asynchronous output-feedback control strategy of semi-Markovian systems via sliding mode-based learning technique. Compare with most literature results that require exact prior knowledge of system state and mode information, an... Read More about Asynchronous learning-based output feedback sliding mode control for semi-Markov jump systems: a descriptor approach.

A Low-Complexity Artificial Neural Network-Based Optimal Droop Gain Design Strategy for DC Microgrids Onboard the More Electric Aircraft (2023)
Journal Article
Hussaini, H., Yang, T., Bai, G., Urrutia-Ortiz, M., & Bozhko, S. (2023). A Low-Complexity Artificial Neural Network-Based Optimal Droop Gain Design Strategy for DC Microgrids Onboard the More Electric Aircraft. IEEE Transactions on Transportation Electrification, https://doi.org/10.1109/TTE.2023.3333270

This article proposes a new droop control design method based on a “reversed data training” of artificial neural network (ANN). Conventionally, after data collection, the ANN is used for forward mapping the control variables (inputs) and system respo... Read More about A Low-Complexity Artificial Neural Network-Based Optimal Droop Gain Design Strategy for DC Microgrids Onboard the More Electric Aircraft.

An Advanced Dual-Carrier-Based Multi-Optimized PWM Strategy of Three-Level Neutral-Point-Clamped Converters for More-Electric-Aircraft Applications (2023)
Journal Article
Guo, F., M. Diab, A., Shen Yeoh, S., Yang, T., Bozhko, S., Wheeler, P., & Zhao, Y. (2024). An Advanced Dual-Carrier-Based Multi-Optimized PWM Strategy of Three-Level Neutral-Point-Clamped Converters for More-Electric-Aircraft Applications. IEEE Transactions on Energy Conversion, 39(1), 356-367. https://doi.org/10.1109/TEC.2023.3312599

Since three-level neutral-point-clamped (3L-NPC) power generation units bring much competitiveness to the next-generation electric starter/generator (ESG) system for more-electric-aircraft (MEA) applications, the versatile multi-optimized pulse-width... Read More about An Advanced Dual-Carrier-Based Multi-Optimized PWM Strategy of Three-Level Neutral-Point-Clamped Converters for More-Electric-Aircraft Applications.

Artificial Intelligence-Based Hierarchical Control Design for Current Sharing and Voltage Restoration in DC Microgrid of the More Electric Aircraft (2023)
Journal Article
Hussaini, H., Yang, T., Bai, G., Urrutia-Ortiz, M., & Bozhko, S. (2024). Artificial Intelligence-Based Hierarchical Control Design for Current Sharing and Voltage Restoration in DC Microgrid of the More Electric Aircraft. IEEE Transactions on Transportation Electrification, 10(1), 566-582. https://doi.org/10.1109/tte.2023.3289773

In the conventional droop control method employed in the primary control layer, there is an inherent tradeoff between current-sharing accuracy and voltage regulation. Consequently, to achieve both accurate current sharing and maintain the bus voltage... Read More about Artificial Intelligence-Based Hierarchical Control Design for Current Sharing and Voltage Restoration in DC Microgrid of the More Electric Aircraft.

Optimal Droop Control Design Using Artificial Intelligent Techniques for Electric Power Systems of More-Electric Aircraft (2023)
Journal Article
Hussaini, H., Yang, T., Gao, Y., Wang, C., Urrutia, M., & Bozhko, S. (2024). Optimal Droop Control Design Using Artificial Intelligent Techniques for Electric Power Systems of More-Electric Aircraft. IEEE Transactions on Transportation Electrification, 10(1), 2192-2206. https://doi.org/10.1109/tte.2023.3271763

The design of the droop coefficient is one of the challenges for the droop control of converters, as it plays a key role in enhancing the performance of the droop control method. This article proposes an artificial neural network (ANN) based techniqu... Read More about Optimal Droop Control Design Using Artificial Intelligent Techniques for Electric Power Systems of More-Electric Aircraft.

An Improved Model Predictive Torque Control for PMSM Drives Based on Discrete Space Vector Modulation (2023)
Journal Article
Zhang, W., Yang, Y., Fan, M., He, L., Ji, A., Xiao, Y., …Rodriguez, J. (2023). An Improved Model Predictive Torque Control for PMSM Drives Based on Discrete Space Vector Modulation. IEEE Transactions on Power Electronics, 38(6), 7535-7545. https://doi.org/10.1109/TPEL.2023.3257399

In this article, an improved model predictive torque control (MPTC) method based on discrete space vector modulation (DSVM) is proposed for permanent magnet synchronous motor (PMSM) drives. Aiming at solving the two problems of large torque ripples a... Read More about An Improved Model Predictive Torque Control for PMSM Drives Based on Discrete Space Vector Modulation.

Fundamental PWM Excitation Based Rotor Position Estimation for a Dual Three-Phase Permanent Magnet Synchronous Machine (2022)
Journal Article
Chen, H., Gao, Q., Yang, T., & Sumner, M. (2023). Fundamental PWM Excitation Based Rotor Position Estimation for a Dual Three-Phase Permanent Magnet Synchronous Machine. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 4(2), 659-668. https://doi.org/10.1109/jestie.2022.3223880

Two rotor position estimation methods for a dual three-phase (DTP) permanent magnet synchronous machine (PMSM) are investigated in this paper, where the rotor position is estimated by exploiting the saliency of the motor through the phase current der... Read More about Fundamental PWM Excitation Based Rotor Position Estimation for a Dual Three-Phase Permanent Magnet Synchronous Machine.

Inverse application of artificial intelligence for the control of power converters (2022)
Journal Article
Gao, Y., Wang, S., Hussaini, H., Yang, T., Dragicevic, T., Bozhko, S., …Vazquez, S. (2022). Inverse application of artificial intelligence for the control of power converters. IEEE Transactions on Power Electronics, https://doi.org/10.1109/TPEL.2022.3209093

This paper proposes a novel application method, Inverse Application of Artificial Intelligence (IAAI) for the control of power electronic converter systems. The proposed method can give the desired control coefficients/references in a simple way beca... Read More about Inverse application of artificial intelligence for the control of power converters.

Speed/Torque Ripple Reduction of High-speed Permanent Magnet Starters/Generators with Low Inductance for More Electric Aircraft Applications (2022)
Journal Article
Zhang, X., Yang, T., & Bozhko, S. (2022). Speed/Torque Ripple Reduction of High-speed Permanent Magnet Starters/Generators with Low Inductance for More Electric Aircraft Applications. IEEE Transactions on Transportation Electrification, https://doi.org/10.1109/TTE.2022.3194972

With the electrification trend of future aircraft, high-speed Permanent Magnet Starters/Generators (PMS/Gs) will potentially be widely used in onboard generation systems due to their high power density and high efficiency. However, the per-unit react... Read More about Speed/Torque Ripple Reduction of High-speed Permanent Magnet Starters/Generators with Low Inductance for More Electric Aircraft Applications.

Hybrid Active Modulation Strategy for Three-Level Neutral-Point-Clamped Converters in High-Speed Aerospace Drives (2022)
Journal Article
Guo, F., Yang, T., Diab, A. M., Huang, Z., Yeoh, S. S., Bozhko, S., & Wheeler, P. (2023). Hybrid Active Modulation Strategy for Three-Level Neutral-Point-Clamped Converters in High-Speed Aerospace Drives. IEEE Transactions on Industrial Electronics, 70(4), 3449-3460. https://doi.org/10.1109/tie.2022.3176309

In the aircraft electric starter/generator system, the three-level neutral-point-clamped converters play a crucial role in driving turbofan engines and delivering onboard electrical power. However, the conventional pulsewidth modulation (PWM) strateg... Read More about Hybrid Active Modulation Strategy for Three-Level Neutral-Point-Clamped Converters in High-Speed Aerospace Drives.

Mild hybridisation of turboprop engine with high-power-density integrated electric drives (2022)
Journal Article
Cossart, G., Chen, Y., Yang, T., Khowja, M., La Rocca, A., Nasir, U., …Wheeler, P. (2022). Mild hybridisation of turboprop engine with high-power-density integrated electric drives. IEEE Transactions on Transportation Electrification, 8(4), 4148-4162. https://doi.org/10.1109/TTE.2022.3160153

This paper shares with the aerospace community a case study of turboprop mild hybridisation using a recently developed integrated drive system in the University of Nottingham, UK, within the ACHIEVE project under EU H2020 CleanSky 2 program (project... Read More about Mild hybridisation of turboprop engine with high-power-density integrated electric drives.

Design Optimization of Modular Permanent Magnet Machine with Triple Three-Phase for Aircraft Starter Generator (2022)
Journal Article
Wang, B., Rocca, A., Vakil, G., Yang, T., & Gerada, C. (2022). Design Optimization of Modular Permanent Magnet Machine with Triple Three-Phase for Aircraft Starter Generator. SAE Technical Papers, https://doi.org/10.4271/2022-01-0055

Permanent magnet (PM) electrical machine has far-reaching impacts in aviation electrification due to the continuous development in high power density and high efficiency electrical drives. The primary barrier to acceptance of permanent magnet machine... Read More about Design Optimization of Modular Permanent Magnet Machine with Triple Three-Phase for Aircraft Starter Generator.

Profiling the Eddy Current Losses Variations of High-Speed Permanent Magnet Machines in Plug-in Hybrid Electric Vehicles (2022)
Journal Article
Huang, Z., Tang, M., Golovanov, D., Yang, T., Herring, S., Zanchetta, P., & Gerada, C. (2022). Profiling the Eddy Current Losses Variations of High-Speed Permanent Magnet Machines in Plug-in Hybrid Electric Vehicles. IEEE Transactions on Transportation Electrification, https://doi.org/10.1109/TTE.2022.3152845

High-speed permanent magnet (PM) machines have been recognized as a popular choice for plug-in hybrid electric vehicles (PHEVs). Although high-speed operation can enhance the machine power density, more rotor eddy current losses can be expected. Thos... Read More about Profiling the Eddy Current Losses Variations of High-Speed Permanent Magnet Machines in Plug-in Hybrid Electric Vehicles.

An Advanced Modulation Technique Featuring Neutral Point Voltage Ripple Suppression of Three-Level Converters in High-Speed Drives (2021)
Journal Article
Li, C., Yang, T., Huang, Z., Yeoh, S. S., Bozhko, S., & Wheeler, P. (2021). An Advanced Modulation Technique Featuring Neutral Point Voltage Ripple Suppression of Three-Level Converters in High-Speed Drives. IEEE Access, 9, 144805-144819. https://doi.org/10.1109/access.2021.3122922

This paper introduces an advanced space vector modulation technique for three-level neutral-point-clamped (3L-NPC) converters. The studied 3L-NPC converters within aircraft electric starter generator (ESG) systems normally operate at high modulation... Read More about An Advanced Modulation Technique Featuring Neutral Point Voltage Ripple Suppression of Three-Level Converters in High-Speed Drives.

Neural Network aided PMSM multi-objective design and optimization for more-electric aircraft applications (2021)
Journal Article
Gao, Y., Yang, T., Bozhko, S., Wheeler, P., Dragicevic, T., & Gerada, C. (2022). Neural Network aided PMSM multi-objective design and optimization for more-electric aircraft applications. Chinese Journal of Aeronautics, 35(10), 233-246. https://doi.org/10.1016/j.cja.2021.08.006

This study uses the Neural Network (NN) technique to optimize design of surface-mounted Permanent Magnet Synchronous Motors (PMSMs) for More-Electric Aircraft (MEA) applications. The key role of NN is to provide dedicated correction factors for the a... Read More about Neural Network aided PMSM multi-objective design and optimization for more-electric aircraft applications.

Technical Review of Dual Inverter Topologies for More Electric Aircraft Applications (2021)
Journal Article
Huang, Z., Yang, T., Giangrande, P., Galea, M., & Wheeler, P. (2021). Technical Review of Dual Inverter Topologies for More Electric Aircraft Applications. IEEE Transactions on Transportation Electrification, https://doi.org/10.1109/tte.2021.3113606

Electric drives are an essential part of more electric aircraft (MEA) applications with ever-growing demands for high power density, high performance, and high fault-tolerant capability. High-speed motor drives can fulfil those needs, but their speed... Read More about Technical Review of Dual Inverter Topologies for More Electric Aircraft Applications.

An Overmodulation Algorithm With Neutral-Point Voltage Balancing for Three-Level Converters in High-Speed Aerospace Drives (2021)
Journal Article
Guo, F., Yang, T., Diab, A. M., Yeoh, S. S., Li, C., Bozhko, S., & Wheeler, P. (2022). An Overmodulation Algorithm With Neutral-Point Voltage Balancing for Three-Level Converters in High-Speed Aerospace Drives. IEEE Transactions on Power Electronics, 37(2), 2021-2032. https://doi.org/10.1109/tpel.2021.3105752

In this article, a virtual space vector based overmodulation algorithm is presented for three-level neutral-point (NP) clamped converters in high-speed aerospace motor drives. With the proposed inscribed polygonal-boundary compression technique, the... Read More about An Overmodulation Algorithm With Neutral-Point Voltage Balancing for Three-Level Converters in High-Speed Aerospace Drives.

An enhanced feedforward flux weakening control for high-speed permanent magnet machine drive applications (2021)
Journal Article
Lang, X., Yang, T., Li, C., Yeoh, S. S., Bozhko, S., & Wheeler, P. (2021). An enhanced feedforward flux weakening control for high-speed permanent magnet machine drive applications. IET Power Electronics, 14(13), 2179-2193. https://doi.org/10.1049/pel2.12170

Permanent magnet machines have been used in the high-speed drive applications due to their high-efficiency, high-power-density, and wide-speed range characteristics. However, control of such high-speed permanent magnet machines machine is always chal... Read More about An enhanced feedforward flux weakening control for high-speed permanent magnet machine drive applications.

Using DC-DC Converters as Active Harmonic Suppression Device for More Electric Aircraft Applications (2021)
Journal Article
Wang, C., Yang, T., Hussaini, H., & Bozhko, S. (2022). Using DC-DC Converters as Active Harmonic Suppression Device for More Electric Aircraft Applications. IEEE Transactions on Industrial Electronics, 69(7), 6508-6518. https://doi.org/10.1109/tie.2021.3099239

Harmonics generated from power electronic converters will impose significant power quality challenges to the electric grid onboard future aircraft. In this article, we propose an innovative modulation scheme that enables using a buck-boost dc-dc conv... Read More about Using DC-DC Converters as Active Harmonic Suppression Device for More Electric Aircraft Applications.

Stability Improvement of Onboard HVdc Grid and Engine Using an Advanced Power Generation Center for the More-Electric Aircraft (2021)
Journal Article
Lang, X., Yang, T., Huang, Z., Wang, C., Wang, Z., Bozhko, S., & Wheeler, P. (2021). Stability Improvement of Onboard HVdc Grid and Engine Using an Advanced Power Generation Center for the More-Electric Aircraft. IEEE Transactions on Transportation Electrification, 8(1), 660-674. https://doi.org/10.1109/tte.2021.3095256

In the high-power settings of engine, such as maximum take-off, more power should be extracted from the high-pressure spool of engine (HPS) than the low-pressure spool of engine (LPS) to avoid the overspeed and potential instability of the HPS. Howev... Read More about Stability Improvement of Onboard HVdc Grid and Engine Using an Advanced Power Generation Center for the More-Electric Aircraft.