Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response (2022)
Journal Article
Wadge, M. D., Bird, M. A., Sankowski, A., Constantin, H., Fay, M. W., Cooper, T. P., …Grant, D. M. (2023). Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response. Advanced Materials Interfaces, 10(5), Article 2201523. https://doi.org/10.1002/admi.202201523

This study describes the chemical conversion and heat treatment of Ti6Al4V microspheres (Ti6_MS), and the resulting effects on their electrocatalytic properties. The wet-chemical conversion (5.0m NaOH, 60°C, 24h; Sample label: Ti6_TC) converts the to... Read More about Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response.

Hydrogen-Induced Conversion of SnS2 into SnS or Sn: A Route to Create SnS2/SnS Heterostructures (2022)
Journal Article
Patanè, A., Felton, J., Blundo, E., Kudrynskyi, Z., Ling, S., Bradford, J., …Patane, A. (2022). Hydrogen-Induced Conversion of SnS2 into SnS or Sn: A Route to Create SnS2/SnS Heterostructures. Small, 18(33), Article 2202661. https://doi.org/10.1002/smll.202202661

The family of van der Waals (vdW) materials is large and diverse with applications ranging from electronics and optoelectronics to catalysis and chemical storage. However, despite intensive research, there remains significant knowledge-gaps pertainin... Read More about Hydrogen-Induced Conversion of SnS2 into SnS or Sn: A Route to Create SnS2/SnS Heterostructures.

Characterization of potential nanoporous sodium titanate film formation on Ti6Al4V and TiO2 microspherical substrates via wet-chemical alkaline conversion (2022)
Journal Article
Wadge, M. D., Carrington, M. J., Constantin, H., Orange, K., Greaves, J., Islam, M. T., …Grant, D. M. (2022). Characterization of potential nanoporous sodium titanate film formation on Ti6Al4V and TiO2 microspherical substrates via wet-chemical alkaline conversion. Materials Characterization, 185, Article 111760. https://doi.org/10.1016/j.matchar.2022.111760

The authors present novel insights into the formation of nanoporous, wet-chemically produced sodium titanate films onto microspherical substrates of varying composition. Microspheres of Ti6Al4V (atomised; ca. 20–50 μm), which were utilised due to the... Read More about Characterization of potential nanoporous sodium titanate film formation on Ti6Al4V and TiO2 microspherical substrates via wet-chemical alkaline conversion.