Skip to main content

Research Repository

Advanced Search

All Outputs (4)

Roots-eye view: using microdialysis and microCT to non-destructively map root nutrient depletion and accumulation zones (2017)
Journal Article
Brackin, R., Atkinson, B. S., Sturrock, C. J., & Rasmussen, A. (2017). Roots-eye view: using microdialysis and microCT to non-destructively map root nutrient depletion and accumulation zones. Plant, Cell and Environment, 40(12), https://doi.org/10.1111/pce.13072

Improvement in fertiliser use efficiency is a key aspect for achieving sustainable agriculture in order to minimise costs, greenhouse gas emissions and pollution from nutrient runoff. To optimise root architecture for nutrient uptake and efficiency w... Read More about Roots-eye view: using microdialysis and microCT to non-destructively map root nutrient depletion and accumulation zones.

Shaping 3D root system architecture (2017)
Journal Article
Morris, E. C., Griffiths, M., Golebiowska, A., Mairhofer, S., Burr-Hersey, J., Goh, T., …Bennett, M. J. (2017). Shaping 3D root system architecture. Current Biology, 27(17), R919-R930. https://doi.org/10.1016/j.cub.2017.06.043

Plants are sessile organisms rooted in one place. The soil resources that plants require are often distributed in a highly heterogeneous pattern. To aid foraging, plants have evolved roots whose growth and development are highly responsive to soil si... Read More about Shaping 3D root system architecture.

Root hydrotropism is controlled via a cortex-specific growth mechanism (2017)
Journal Article
Dietrich, D., Pang, L., Kobayashi, A., Fozard, J. A., Boudolf, V., Bhosale, R., …Bennett, M. J. (2017). Root hydrotropism is controlled via a cortex-specific growth mechanism. Nature Plants, 3(6), Article 17057. https://doi.org/10.1038/nplants.2017.57

Plants can acclimate by using tropisms to link the direction of growth to environmental conditions. Hydrotropism allows roots to forage for water, a process known to depend on abscisic acid (ABA) but whose molecular and cellular basis remains unclear... Read More about Root hydrotropism is controlled via a cortex-specific growth mechanism.

Non-destructive determination of floral staging in cereals using X-ray micro computed tomography (µCT) (2017)
Journal Article
Tracy, S. R., Gómez, J. F., Sturrock, C., Wilson, Z. A., & Ferguson, A. (2017). Non-destructive determination of floral staging in cereals using X-ray micro computed tomography (µCT). Plant Methods, 13(1), https://doi.org/10.1186/s13007-017-0162-x

Background Accurate floral staging is required to aid research into pollen and flower development, in particular male development. Pollen development is highly sensitive to stress and is critical for crop yields. Research into male development under... Read More about Non-destructive determination of floral staging in cereals using X-ray micro computed tomography (µCT).