Skip to main content

Research Repository

Advanced Search

All Outputs (123)

Robustness of many-body localization in the presence of dissipation (2016)
Journal Article
Levi, E., Heyl, M., Lesanovsky, I., & Garrahan, J. P. (2016). Robustness of many-body localization in the presence of dissipation. Physical Review Letters, 116, Article 237203. https://doi.org/10.1103/PhysRevLett.116.237203

Many-body localization (MBL) has emerged as a novel paradigm for robust ergodicity breaking in closed quantum many-body systems. However, it is not yet clear to which extent MBL survives in the presence of dissipative processes induced by the couplin... Read More about Robustness of many-body localization in the presence of dissipation.

Non-equilibrium dynamics of non-linear Jaynes-Cummings model in cavity arrays (2016)
Journal Article
Minář, J., Söyler, Ş. G., & Lesanovsky, I. (2016). Non-equilibrium dynamics of non-linear Jaynes-Cummings model in cavity arrays. New Journal of Physics, 18(5), 1-16. https://doi.org/10.1088/1367-2630/18/5/053035

We analyze in detail an open cavity array using mean-field description, where each cavity field is coupled to a number of three-level atoms. Such system is highly tunable and can be described by a Jaynes-Cummings like Hamiltonian with additional non-... Read More about Non-equilibrium dynamics of non-linear Jaynes-Cummings model in cavity arrays.

Towards rotation sensing with a single atomic clock (2016)
Journal Article
Fernholz, T., Stevenson, R., Hush, M. R., Lesanovsky, I., Bishop, T., Gentile, F., …von Klitzing, W. (2016). Towards rotation sensing with a single atomic clock. Proceedings of SPIE, 9900(990007), https://doi.org/10.1117/12.2229878

We discuss a scheme to implement a gyroscopic atom sensor with magnetically trapped ultra-cold atoms. Unlike standard light or matter wave Sagnac interferometers no free wave propagation is used. Interferometer operation is controlled only with stati... Read More about Towards rotation sensing with a single atomic clock.

Experimental observation of controllable kinetic constraints in a cold atomic gas (2016)
Journal Article
Valado, M., Simonelli, C., Hoogerland, M., Lesanovsky, I., Garrahan, J. P., Arimondo, E., …Morsch, O. (2016). Experimental observation of controllable kinetic constraints in a cold atomic gas. Physical Review A, 93(4), Article 040701. https://doi.org/10.1103/PhysRevA.93.040701

Many-body systems relaxing to equilibrium can exhibit complex dynamics even if their steady state is trivial. In situations where relaxation requires highly constrained local particle rearrangements, such as in glassy systems, this dynamics can be di... Read More about Experimental observation of controllable kinetic constraints in a cold atomic gas.

Solid effect DNP polarization dynamics in a system of many spins (2016)
Journal Article
Wiśniewski, D., Karabanov, A., Lesanovsky, I., & Köckenberger, W. (2016). Solid effect DNP polarization dynamics in a system of many spins. Journal of Magnetic Resonance, 264, 30-38. https://doi.org/10.1016/j.jmr.2016.01.016

We discuss the polarization dynamics during solid effect dynamic nuclear polarization (DNP) in a central spin model that consists of an electron surrounded by many nuclei. To this end we use a recently developed formalism and validate first its perfo... Read More about Solid effect DNP polarization dynamics in a system of many spins.

Dynamical phase transitions as a resource for quantum enhanced metrology (2016)
Journal Article
Macieszczak, K., Gu??, M., Lesanovsky, I., & Garrahan, J. P. (2016). Dynamical phase transitions as a resource for quantum enhanced metrology. Physical Review A, 93(2), Article 022103. https://doi.org/10.1103/PhysRevA.93.022103

We consider the general problem of estimating an unknown control parameter of an open quantum system. We establish a direct relation between the evolution of both system and environment and the precision with which the parameter can be estimated. We... Read More about Dynamical phase transitions as a resource for quantum enhanced metrology.

Self-similar non-equilibrium dynamics of a many-body system with power-law interactions (2015)
Journal Article
Gutierrez, R., Garrahan, J. P., & Lesanovsky, I. (2015). Self-similar non-equilibrium dynamics of a many-body system with power-law interactions. Physical Review E, 92(6), Article e062144. https://doi.org/10.1103/PhysRevE.92.062144

The influence of power-law interactions on the dynamics of many-body systems far from equilibrium is much less explored than their effect on static and thermodynamic properties. To gain insight into this problem we introduce and analyze here an out-o... Read More about Self-similar non-equilibrium dynamics of a many-body system with power-law interactions.

Emergent devil's staircase without particle-hole symmetry in Rydberg quantum gases with competing attractive and repulsive interactions (2015)
Journal Article
Lan, Z., Minář, J., Levi, E., Li, W., & Lesanovsky, I. (2015). Emergent devil's staircase without particle-hole symmetry in Rydberg quantum gases with competing attractive and repulsive interactions. Physical Review Letters, 115, Article 203001. https://doi.org/10.1103/PhysRevLett.115.203001

The devil's staircase is a fractal structure that characterizes the ground state of one-dimensional classical lattice gases with long-range repulsive convex interactions. Its plateaus mark regions of stability for specific filling fractions which are... Read More about Emergent devil's staircase without particle-hole symmetry in Rydberg quantum gases with competing attractive and repulsive interactions.

Coherence in a cold atom photon transistor (2015)
Journal Article
Li, W., & Lesanovsky, I. (2015). Coherence in a cold atom photon transistor. Physical Review A, 92(4), Article 043828. https://doi.org/10.1103/PhysRevA.92.043828

Recent experiments have realized an all-optical photon transistor using a cold atomic gas. This approach relies on electromagnetically induced transparency (EIT) in conjunction with the strong interaction among atoms excited to high-lying Rydberg sta... Read More about Coherence in a cold atom photon transistor.

Sagnac Interferometry with a Single Atomic Clock (2015)
Journal Article
Stevenson, R., Hush, M. R., Bishop, T., Lesanovsky, I., & Fernholz, T. (2015). Sagnac Interferometry with a Single Atomic Clock. Physical Review Letters, 115(16), Article 163001. https://doi.org/10.1103/PhysRevLett.115.163001

© 2015 American Physical Society. © 2015 American Physical Society. The Sagnac effect enables interferometric measurements of rotation with high precision. Using matter waves instead of light promises resolution enhancement by orders of magnitude tha... Read More about Sagnac Interferometry with a Single Atomic Clock.

Non-equilibrium universality in the dynamics of dissipative cold atomic gases (2015)
Journal Article
Marcuzzi, M., Levi, E., Li, W., Garrahan, J. P., Olmos, B., & Lesanovsky, I. (2015). Non-equilibrium universality in the dynamics of dissipative cold atomic gases. New Journal of Physics, 17(July), Article 72003. https://doi.org/10.1088/1367-2630/17/7/072003

The theory of continuous phase transitions predicts the universal collective properties of a physical system near a critical point, which for instance manifest in characteristic power-law behaviours of physical observables. The well-established conce... Read More about Non-equilibrium universality in the dynamics of dissipative cold atomic gases.

Dynamic Nuclear Polarization as Kinetically Constrained Diffusion (2015)
Journal Article
Köckenberger, W., Wiśniewski, D., Karabanov, A., Wiśniewski, D., Lesanovsky, I., & Köckenberger, W. (2015). Dynamic Nuclear Polarization as Kinetically Constrained Diffusion. Physical Review Letters, 115(2), Article 020404. https://doi.org/10.1103/physrevlett.115.020404

Dynamic nuclear polarization (DNP) is a promising strategy for generating a significantly increased nonthermal spin polarization in nuclear magnetic resonance (NMR) and its applications that range from medicine diagnostics to material science. Being... Read More about Dynamic Nuclear Polarization as Kinetically Constrained Diffusion.

Spin correlations as a probe of quantum synchronization in trapped ion phonon-lasers (2015)
Journal Article
Hush, M. R., Li, W., Genway, S., Lesanovsky, I., & Armour, A. (2015). Spin correlations as a probe of quantum synchronization in trapped ion phonon-lasers. Physical Review A, 91, Article 061401. https://doi.org/10.1103/PhysRevA.91.061401

We investigate quantum synchronization theoretically in a system consisting of two cold ions in microtraps. The ions' motion is damped by a standing-wave laser whilst also being driven by a blue-detuned laser which results in self-oscillation. Workin... Read More about Spin correlations as a probe of quantum synchronization in trapped ion phonon-lasers.

Strongly correlated growth of Rydberg aggregates in a vapor cell (2015)
Journal Article
Urvoy, A., Ripka, F., Lesanovsky, I., Booth, D., Shaffer, J., Pfau, T., & Löw, R. (2015). Strongly correlated growth of Rydberg aggregates in a vapor cell. Physical Review Letters, 114, Article 203002. https://doi.org/10.1103/PhysRevLett.114.203002

The observation of strongly interacting many-body phenomena in atomic gases typically requires ultracold samples. Here we show that the strong interaction potentials between Rydberg atoms enable the observation of many-body effects in an atomic vapor... Read More about Strongly correlated growth of Rydberg aggregates in a vapor cell.

Universal nonequilibrium properties of dissipative rydberg gases (2014)
Journal Article
Marcuzzi, M., Levi, E., Diehl, S., Garrahan, J. P., & Lesanovsky, I. (2014). Universal nonequilibrium properties of dissipative rydberg gases. Physical Review Letters, 113(21), Article 210401. https://doi.org/10.1103/PhysRevLett.113.210401

© 2014 American Physical Society. We investigate the out-of-equilibrium behavior of a dissipative gas of Rydberg atoms that features a dynamical transition between two stationary states characterized by different excitation densities. We determine th... Read More about Universal nonequilibrium properties of dissipative rydberg gases.

Effective dynamics of strongly dissipative Rydberg gases (2014)
Journal Article
Marcuzzi, M., Schick, J., Olmos, B., & Lesanovsky, I. (2014). Effective dynamics of strongly dissipative Rydberg gases. Journal of Physics A: Mathematical and Theoretical, 47(48), Article 482001. https://doi.org/10.1088/1751-8113/47/48/482001

We investigate the evolution of interacting Rydberg gases in the limit of strong noise and dissipation. Starting from a description in terms of a Markovian quantum master equation we derive effective equations of motion that govern the dynamics on a... Read More about Effective dynamics of strongly dissipative Rydberg gases.

Many-body out-of-equilibrium dynamics of hard-core lattice bosons with non-local loss (2014)
Journal Article
Everest, B., Hush, M., & Lesanovsky, I. (2014). Many-body out-of-equilibrium dynamics of hard-core lattice bosons with non-local loss. Physical Review B, 90(13), Article 134306. https://doi.org/10.1103/PhysRevB.90.134306

We explore the dynamics of hard-core lattice bosons in the presence of strong non-local particle loss. The evolution occurs on two distinct time-scales, first a rapid strongly correlated decay into a highly degenerate Zeno state subspace, followed by... Read More about Many-body out-of-equilibrium dynamics of hard-core lattice bosons with non-local loss.

Out-of-equilibrium structures in strongly interacting Rydberg gases with dissipation (2014)
Journal Article
Lesanovsky, I., & Garrahan, J. (2014). Out-of-equilibrium structures in strongly interacting Rydberg gases with dissipation. Physical Review A, 90(1), 1-5. doi:10.1103/PhysRevA.90.011603

The nonequilibrium dynamics of a gas of cold atoms in which Rydberg states are off-resonantly excited is studied in the presence of noise. The interplay between interaction and off-resonant excitation leads to an initial dynamics where aggregates of... Read More about Out-of-equilibrium structures in strongly interacting Rydberg gases with dissipation.

Electromagnetically induced transparency in an entangled medium (2014)
Journal Article
Li, W., Viscor, D., Hofferberth, S., & Lesanovsky, I. (2014). Electromagnetically induced transparency in an entangled medium. Physical Review Letters, 112(24), https://doi.org/10.1103/PhysRevLett.112.243601

We theoretically investigate light propagation and electromagnetically induced transparency (EIT) in a quasi one-dimensional gas in which atoms interact strongly via exchange interactions. We focus on the case in which the gas is initially prepared i... Read More about Electromagnetically induced transparency in an entangled medium.