Skip to main content

Research Repository

Advanced Search

All Outputs (5)

From scrap metal to highly efficient electrodes: harnessing the nanotextured surface of swarf for effective utilisation of Pt and Co for hydrogen production (2024)
Journal Article
Thangamuthu, M., Kohlrausch, E. C., Li, M., Speidel, A., Clare, A. T., Plummer, R., …Alves Fernandes, J. (2024). From scrap metal to highly efficient electrodes: harnessing the nanotextured surface of swarf for effective utilisation of Pt and Co for hydrogen production. Journal of Materials Chemistry A, https://doi.org/10.1039/d4ta00711e

Hydrogen is considered to be the key element to achieving climate neutrality, leading to a massive demand for electrocatalysts. This work explores the transformation of metal waste into active and stable electrode materials for water splitting by mod... Read More about From scrap metal to highly efficient electrodes: harnessing the nanotextured surface of swarf for effective utilisation of Pt and Co for hydrogen production.

Structure and chemical composition of the Mg electrode during cycling in a simple glyme electrolyte (2024)
Journal Article
Dimogiannis, K., Sankowski, A., Holc, C., Parmenter, C. D., Newton, G. N., Walsh, D. A., …Johnson, L. R. (2024). Structure and chemical composition of the Mg electrode during cycling in a simple glyme electrolyte. Energy Storage Materials, 67, Article 103280. https://doi.org/10.1016/j.ensm.2024.103280

The volumetric energy density of magnesium exceeds that of lithium, making magnesium batteries particularly promising for next-generation energy storage. However, electrochemical cycling of magnesium electrodes in common battery electrolytes is coulo... Read More about Structure and chemical composition of the Mg electrode during cycling in a simple glyme electrolyte.

Synergy of nanocrystalline carbon nitride with Cu single atom catalyst leads to selective photocatalytic reduction of CO2 to methanol (2024)
Journal Article
LeMercier, T. M., Thangamuthu, M., Kohlrausch, E. C., Chen, Y., Stoppiello, C. T., Fay, M. W., …Khlobystov, A. N. (2024). Synergy of nanocrystalline carbon nitride with Cu single atom catalyst leads to selective photocatalytic reduction of CO2 to methanol. Sustainable Energy and Fuels, 1691-1703. https://doi.org/10.1039/D4SE00028E

Carbon nitride (C3N4) possesses both a band gap in the visible range and a low-lying conduction band potential, suitable for water splitting and CO2 reduction reactions (CO2RR). Yet, bulk C3N4 (b-C3N4) suffers from structural disorder leading to slug... Read More about Synergy of nanocrystalline carbon nitride with Cu single atom catalyst leads to selective photocatalytic reduction of CO2 to methanol.

Direct Deposition of Copper Atoms onto Graphitic Step Edges Lowers Overpotential and Improves Selectivity of Electrocatalytic CO2 Reduction (2024)
Working Paper
Thangamuthu, M., Burwell, T., Aliev, G., Ghaderzadeh, S., Kohlrausch, E., Chen, Y., …Khlobystov, A. Direct Deposition of Copper Atoms onto Graphitic Step Edges Lowers Overpotential and Improves Selectivity of Electrocatalytic CO2 Reduction

Minimizing our reliance on bulk precious metals is to increase the fraction of surface atoms and improve the metal-support interface. In this work, we employ a solvent/ligand/counterion-free method to deposit copper in the atomic form directly onto a... Read More about Direct Deposition of Copper Atoms onto Graphitic Step Edges Lowers Overpotential and Improves Selectivity of Electrocatalytic CO2 Reduction.

Atomic-Scale Time-Resolved Imaging of Krypton Dimers, Chains and Transition to a One-Dimensional Gas (2024)
Journal Article
Cardillo-Zallo, I., Biskupek, J., Bloodworth, S., Marsden, E. S., Fay, M. W., Ramasse, Q. M., …Khlobystov, A. N. (2024). Atomic-Scale Time-Resolved Imaging of Krypton Dimers, Chains and Transition to a One-Dimensional Gas. ACS Nano, 18(4), 2958–2971. https://doi.org/10.1021/acsnano.3c07853

Single-atom dynamics of noble-gas elements have been investigated using time-resolved transmission electron microscopy (TEM), with direct observation providing for a deeper understanding of chemical bonding, reactivity, and states of matter at the na... Read More about Atomic-Scale Time-Resolved Imaging of Krypton Dimers, Chains and Transition to a One-Dimensional Gas.