Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Computational evaluation of the impact of incorporated nitrogen and oxygen heteroatoms on the affinity of polyaromatic ligands for carbon dioxide and methane in metal–organic frameworks (2016)
Journal Article
Henley, A., Lennox, M. J., Easun, T. L., Moreau, F., Schröder, M., & Besley, E. (2016). Computational evaluation of the impact of incorporated nitrogen and oxygen heteroatoms on the affinity of polyaromatic ligands for carbon dioxide and methane in metal–organic frameworks. Journal of Physical Chemistry C, 48(120), 27342-27348. https://doi.org/10.1021/acs.jpcc.6b08767

Density functional theory is employed to explore the binding of carbon dioxide and methane in a series of isoreticular metal–organic frameworks, with particular emphasis on understanding the impact of directly incorporated nitrogen and oxygen heteroa... Read More about Computational evaluation of the impact of incorporated nitrogen and oxygen heteroatoms on the affinity of polyaromatic ligands for carbon dioxide and methane in metal–organic frameworks.

Non-interpenetrated metal-organic frameworks based on copper(II) paddlewheel and oligoparaxylene-isophthalate linkers: synthesis, structure and gas adsorption (2016)
Journal Article
Yan, Y., Juricek, M., Coudert, F., Vermeulan, N. A., Grunder, S., Dailly, A., …Schröder, M. (2016). Non-interpenetrated metal-organic frameworks based on copper(II) paddlewheel and oligoparaxylene-isophthalate linkers: synthesis, structure and gas adsorption. Journal of the American Chemical Society, 138(10), https://doi.org/10.1021/jacs.5b12312

Two metal–organic framework materials, MFM-130 and MFM-131 (MFM = Manchester Framework Material), have been synthesized using two oligoparaxylene (OPX) tetracarboxylate linkers containing four and five aromatic rings, respectively. Both fof-type non-... Read More about Non-interpenetrated metal-organic frameworks based on copper(II) paddlewheel and oligoparaxylene-isophthalate linkers: synthesis, structure and gas adsorption.

Understanding the electromagnetic interaction of metal organic framework reactants in aqueous solution at microwave frequencies (2016)
Journal Article
Laybourn, A., Katrib, J., Palade, P. A., Easun, T. L., Champness, N. R., Schröder, M., & Kingman, S. W. (2016). Understanding the electromagnetic interaction of metal organic framework reactants in aqueous solution at microwave frequencies. Physical Chemistry Chemical Physics, 18(7), https://doi.org/10.1039/C5CP05426E

Preparation of metal organic frameworks (MOFs) via microwave heating is becoming increasingly popular due to reduced reaction times and enhanced control of MOF particle size. However, there is little understanding about the detailed interaction of th... Read More about Understanding the electromagnetic interaction of metal organic framework reactants in aqueous solution at microwave frequencies.