Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Comparative Study on Stranded and Hairpin Windings for 350kW EV Traction Motor (2023)
Conference Proceeding
Jiang, J., Zou, T., Rocca, S. L., Gerada, D., & Gerada, C. (2023). Comparative Study on Stranded and Hairpin Windings for 350kW EV Traction Motor. In 2023 26th International Conference on Electrical Machines and Systems (ICEMS). https://doi.org/10.1109/icems59686.2023.10345248

Hairpin winding is a key technology for traction motors to meet the step-change requirements on power density and efficiency in electrical vehicle (EV) industry. This winding solution features inherently high slot fill factor and improved heat dissip... Read More about Comparative Study on Stranded and Hairpin Windings for 350kW EV Traction Motor.

Design of Hairpin Winding and Random Winding Stators for High Speed Heavy-Duty Traction Motor (2023)
Conference Proceeding
Jiang, J., Zou, T., La Rocca, A., La Rocca, S., Liu, C., Xu, Z., …Gerada, D. (2023). Design of Hairpin Winding and Random Winding Stators for High Speed Heavy-Duty Traction Motor. In 2023 IEEE Vehicle Power and Propulsion Conference (VPPC). https://doi.org/10.1109/VPPC60535.2023.10403273

Hairpin winding with rectangularly shaped conductors are gradually replacing random winding wound with stranded wires in electric vehicle (EV) industry. As the newgeneration winding technology, hairpin winding features high electromagnetic and therma... Read More about Design of Hairpin Winding and Random Winding Stators for High Speed Heavy-Duty Traction Motor.

Investigating Synchronous Reluctance Rotor Performance for Traction Applications against a Permanent Magnet Benchmark (2022)
Conference Proceeding
Connor, P. H., Khowja, M., La Rocca, A., La Rocca, S., Zou, T., Vakil, G., …Paciura, K. (2022). Investigating Synchronous Reluctance Rotor Performance for Traction Applications against a Permanent Magnet Benchmark. . https://doi.org/10.1109/icem51905.2022.9910649

This paper investigates the potential benefits for the use of synchronous reluctance machines for traction applications. Permanent magnet machines are often used to generate the highest power densities. However, magnet use has drawbacks including tem... Read More about Investigating Synchronous Reluctance Rotor Performance for Traction Applications against a Permanent Magnet Benchmark.

Performance Assessment of Standard Cooling Strategies for Hairpin Windings (2022)
Conference Proceeding
La Rocca, A., La Rocca, S., Zou, T., Liu, C., Moslemin, M., Gerada, C., & Cairns, A. (2022). Performance Assessment of Standard Cooling Strategies for Hairpin Windings. In 2022 International Conference on Electrical Machines (ICEM) (1163-1169). https://doi.org/10.1109/icem51905.2022.9910733

This paper aims to assess the performance of some standard cooling strategies which are commonly used in traction electric motors for electric vehicles (EVs) employing hairpin windings. The use of such type of coils does normally lead to higher power... Read More about Performance Assessment of Standard Cooling Strategies for Hairpin Windings.

Multi-physics Design Optimisation of PM-assisted Synchronous Reluctance Motor for Traction Application (2019)
Conference Proceeding
Al-Ani, M., Walker, A., Vakil, G., Ramanathan, R., Zou, T., La Rocca, S., …McQueen, A. (2019). Multi-physics Design Optimisation of PM-assisted Synchronous Reluctance Motor for Traction Application. In Proceedings: IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society (4353-4359). https://doi.org/10.1109/IECON.2019.8926697

Recently, the synchronous reluctance machine limits have been pushed toward meeting the requirements of traction applications. A skilled electromagnetic architecture of a synchronous reluctance machine with the help of permanent magnets can push the... Read More about Multi-physics Design Optimisation of PM-assisted Synchronous Reluctance Motor for Traction Application.