Skip to main content

Research Repository

Advanced Search

All Outputs (102)

Drop-on-demand 3D printing of programable magnetic composites for soft robotics (2024)
Journal Article
Bastola, A., Parry, L., Worsley, R., Ahmed, N., Lester, E., Hague, R., & Tuck, C. (2024). Drop-on-demand 3D printing of programable magnetic composites for soft robotics. Additive Manufacturing Letters, 11, Article 100250. https://doi.org/10.1016/j.addlet.2024.100250

Soft robotics have become increasingly popular as a versatile alternative to traditional robotics. Magnetic composite materials, which respond to external magnetic fields, have attracted significant interest in this field due to their programmable tw... Read More about Drop-on-demand 3D printing of programable magnetic composites for soft robotics.

Additive manufacturing of functionalised atomic vapour cells for next-generation quantum technologies (2024)
Journal Article
Wang, F., Cooper, N., He, Y., Hopton, B., Johnson, D., Zhao, P., Tuck, C. J., Hague, R., Fromhold, T. M., Wildman, R., Turyanska, L., & Hackermueller, L. (2025). Additive manufacturing of functionalised atomic vapour cells for next-generation quantum technologies. Quantum Science and Technology, 10(1), Article 015019. https://doi.org/10.1088/2058-9565/ad8678

Atomic vapour cells are an indispensable tool for quantum technologies (QT), but potential improvements are limited by the capacities of conventional manufacturing techniques. Using an additive manufacturing (AM) technique—vat polymerisation by digit... Read More about Additive manufacturing of functionalised atomic vapour cells for next-generation quantum technologies.

Developing colloidal nanoparticles for inkjet printing of devices with optical properties tuneable from the UV to the NIR (2024)
Journal Article
Austin, J. S., Xiao, W., Wang, F., Cottam, N. D., Rivers, G., Ward, E. B., Luan, W., Tuck, C. J., Hague, R., Makarovsky, O., Turyanska, L., & James, T. S. (2024). Developing colloidal nanoparticles for inkjet printing of devices with optical properties tuneable from the UV to the NIR. Journal of Materials Chemistry C, https://doi.org/10.1039/D4TC01917B

Colloidal low-dimensional photo-sensitive nanomaterials have attracted significant interest for optoelectronic device applications where inkjet printing offers a high accuracy and low waste route for their deposition on silicon-based, as well as flex... Read More about Developing colloidal nanoparticles for inkjet printing of devices with optical properties tuneable from the UV to the NIR.

Enabling High-fidelity Personalized Pharmaceutical Tablets through Multimaterial Inkjet 3D Printing with a Water-soluble Excipient (2024)
Journal Article
Rivers, G., Lion, A., Rofiqoh Eviana Putri, N., Rance, G., Moloney, C., Taresco, V., Crucitti, V. C., Constantin, H., Inê Evangelista Barreiros, M., Cantu, L. R., Tuck, C., Rose, F. R. A. J., Hague, R. J. M., Roberts, C. J., Turyanska, L., Wildman, R. D., & He, Y. (2024). Enabling High-fidelity Personalized Pharmaceutical Tablets through Multimaterial Inkjet 3D Printing with a Water-soluble Excipient. Materials Today Advances, 22, Article 100493. https://doi.org/10.1016/j.mtadv.2024.100493

Additive manufacturing offers manufacture of personalised pharmaceutical tablets through design freedoms and material deposition control at an individual voxel level. This control goes beyond geometry and materials choices: inkjet based 3D printing e... Read More about Enabling High-fidelity Personalized Pharmaceutical Tablets through Multimaterial Inkjet 3D Printing with a Water-soluble Excipient.

Enabling high-fidelity personalised pharmaceutical tablets through multimaterial inkjet 3D printing with a water-soluble excipient (2024)
Journal Article
Rivers, G., Lion, A., Putri, N. R. E., Rance, G. A., Moloney, C., Taresco, V., Crucitti, V. C., Constantin, H., Evangelista Barreiros, M. I., Cantu, L. R., Tuck, C. J., Rose, F. R., Hague, R. J., Roberts, C. J., Turyanska, L., Wildman, R. D., & He, Y. (2024). Enabling high-fidelity personalised pharmaceutical tablets through multimaterial inkjet 3D printing with a water-soluble excipient. Materials Today Advances, 22, Article 100493. https://doi.org/10.1016/j.mtadv.2024.100493

Additive manufacturing offers manufacture of personalised pharmaceutical tablets through design freedoms and material deposition control at an individual voxel level. This control goes beyond geometry and materials choices: inkjet based 3D printing e... Read More about Enabling high-fidelity personalised pharmaceutical tablets through multimaterial inkjet 3D printing with a water-soluble excipient.

Identification of an affordable and printable metastable β Ti alloy with outstanding deformation behaviour for use in laser powder bed fusion (2024)
Journal Article
Zou, Z., Dunstan, M. K., McWilliams, B., Hague, R., & Simonelli, M. (2024). Identification of an affordable and printable metastable β Ti alloy with outstanding deformation behaviour for use in laser powder bed fusion. Materials Science and Engineering: A, 902, Article 146619. https://doi.org/10.1016/j.msea.2024.146619

Research on metastable β Ti alloys has recently shown the possibility to achieve outstanding ductility and work hardening behaviours by engineering the materials’ unique strain transformable attributes and responses to heat treatment. As quenching is... Read More about Identification of an affordable and printable metastable β Ti alloy with outstanding deformation behaviour for use in laser powder bed fusion.

Additive Manufacturing of Electrically Conductive Multi-Layered Nanocopper in an Air Environment (2024)
Journal Article
Pervan, D., Bastola, A., Worsley, R., Wildman, R., Hague, R., Lester, E., & Tuck, C. (2024). Additive Manufacturing of Electrically Conductive Multi-Layered Nanocopper in an Air Environment. Nanomaterials, 14(9), Article 753. https://doi.org/10.3390/nano14090753

The additive manufacturing (AM) of functional copper (Cu) parts is a major goal for many industries, from aerospace to automotive to electronics, because Cu has a high thermal and electrical conductivity as well as being ~10× cheaper than silver. Pre... Read More about Additive Manufacturing of Electrically Conductive Multi-Layered Nanocopper in an Air Environment.

Drop-on-demand metal jetting of pure copper: On the interaction of molten metal with ceramic and metallic substrates (2024)
Journal Article
Gilani, N., Aboulkhair, N. T., Simonelli, M., East, M., & Hague, R. J. (2024). Drop-on-demand metal jetting of pure copper: On the interaction of molten metal with ceramic and metallic substrates. Materials and Design, 240, Article 112834. https://doi.org/10.1016/j.matdes.2024.112834

Copper, renowned for its exceptional electrical and thermal conductivity at a low cost, holds great promise in electronic applications. While additive manufacturing of copper has attracted interest, the exploration of applying Drop-on-demand Metal Je... Read More about Drop-on-demand metal jetting of pure copper: On the interaction of molten metal with ceramic and metallic substrates.

Quantum Nature of Charge Transport in Inkjet-Printed Graphene Revealed in High Magnetic Fields up to 60T (2024)
Journal Article
Cottam, N. D., Wang, F., Austin, J. S., Tuck, C. J., Hague, R., Fromhold, M., Escoffier, W., Goiran, M., Pierre, M., Makarovsky, O., & Turyanska, L. (2024). Quantum Nature of Charge Transport in Inkjet-Printed Graphene Revealed in High Magnetic Fields up to 60T. Small, 20(30), Article 2311416. https://doi.org/10.1002/smll.202311416

Inkjet‐printing of graphene, iGr, provides an alternative route for the fabrication of highly conductive and flexible graphene films for use in devices. However, the contribution of quantum phenomena associated with 2D single layer graphene, SLG, to... Read More about Quantum Nature of Charge Transport in Inkjet-Printed Graphene Revealed in High Magnetic Fields up to 60T.

Additive manufacturing of Nd-Fe-B permanent magnets and their application in electrical machines (2024)
Journal Article
Wu, J., Korman, O., Di Nardo, M., Degano, M., Gerada, C., Ashcroft, I., J.M. Hague, R., & T. Aboulkhair, N. (2024). Additive manufacturing of Nd-Fe-B permanent magnets and their application in electrical machines. IEEE Access, 12, 138921-138931. https://doi.org/10.1109/ACCESS.2024.3436643

Powder Bed Fusion - Laser Beam (PBF-LB), a form of additive manufacturing (AM) for Nd-Fe-B permanent magnets, is attracting substantial interest for its ability to process functional magnetic materials while capitalizing on AM's design flexibility an... Read More about Additive manufacturing of Nd-Fe-B permanent magnets and their application in electrical machines.

Off the Grid: a new strategy for material-jet 3D printing with enhanced sub-droplet resolution (2023)
Journal Article
Nelson-Dummett, O., Rivers, G., Gilani, N., Simonelli, M., Tuck, C. J., Wildman, R. D., Hague, R. J., & Turyanska, L. (2024). Off the Grid: a new strategy for material-jet 3D printing with enhanced sub-droplet resolution. Additive Manufacturing Letters, 8, Article 100185. https://doi.org/10.1016/j.addlet.2023.100185

Drop-on-Demand additive manufacturing could offer a facile solution for scalable on-site manufacturing. With an increasing number of functional materials available for this technology, there are growing opportunities for applications, such as electro... Read More about Off the Grid: a new strategy for material-jet 3D printing with enhanced sub-droplet resolution.

On the development of twinning-induced plasticity in additively manufactured 316L stainless steel (2023)
Journal Article
Crociata, D. D., Maskery, I., Hague, R., & Simonelli, M. (2023). On the development of twinning-induced plasticity in additively manufactured 316L stainless steel. Additive Manufacturing Letters, 7, Article 100176. https://doi.org/10.1016/j.addlet.2023.100176

A report on twinning-induced plasticity in 316L stainless steel manufactured by metal additive manufacturing (AM) is presented. A tapered tensile test geometry was used which enabled the investigation of twin formation over a range of strain levels i... Read More about On the development of twinning-induced plasticity in additively manufactured 316L stainless steel.

Formulation of functional materials for inkjet printing: A pathway towards fully 3D printed electronics (2023)
Journal Article
Bastola, A., He, Y., Im, J., Rivers, G., Wang, F., Worsley, R., Austin, J. S., Nelson-Dummett, O., Wildman, R. D., Hague, R., Tuck, C. J., & Turyanska, L. (2023). Formulation of functional materials for inkjet printing: A pathway towards fully 3D printed electronics. Materials Today Electronics, 6, Article 100058. https://doi.org/10.1016/j.mtelec.2023.100058

Inkjet printing offers a facile route for manufacturing the next generation of electronic devices, by combining the design freedom of additive manufacturing technologies with tuneable properties of functional materials and opportunities for their int... Read More about Formulation of functional materials for inkjet printing: A pathway towards fully 3D printed electronics.

Amorphous-crystalline nanostructured Nd-Fe-B permanent magnets using laser powder bed fusion: Metallurgy and magnetic properties (2023)
Journal Article
Wu, J., Aboulkhair, N. T., Robertson, S., Zhou, Z., Bagot, P. A., Moody, M. P., Degano, M., Ashcroft, I., & Hague, R. J. (2023). Amorphous-crystalline nanostructured Nd-Fe-B permanent magnets using laser powder bed fusion: Metallurgy and magnetic properties. Acta Materialia, 259, 119239. https://doi.org/10.1016/j.actamat.2023.119239

Laser powder-bed fusion (PBF-LB), a class of additive manufacturing (AM), has attracted wide interest in the production of Nd-Fe-B permanent magnets, benefiting from the minimisation of waste of rare-earth elements and the post-processing requirement... Read More about Amorphous-crystalline nanostructured Nd-Fe-B permanent magnets using laser powder bed fusion: Metallurgy and magnetic properties.

Stable large area drop-on-demand deposition of a conductive polymer ink for 3D-printed electronics, enabled by bio-renewable co-solvents (2023)
Journal Article
Rivers, G., Austin, J. S., He, Y., Thompson, A., Gilani, N., Roberts, N., Zhao, P., Tuck, C. J., Hague, R. J., Wildman, R. D., & Turyanska, L. (2023). Stable large area drop-on-demand deposition of a conductive polymer ink for 3D-printed electronics, enabled by bio-renewable co-solvents. Additive Manufacturing, 66, Article 103452. https://doi.org/10.1016/j.addma.2023.103452

Development of conductive polymer ink formulations with reliable jetting stability and physical properties could offer sustainable routes for scaling-up the 3D-printing of electronics. We report a new poly(3,4-ethylenedioxythiophene) polystyrene sulp... Read More about Stable large area drop-on-demand deposition of a conductive polymer ink for 3D-printed electronics, enabled by bio-renewable co-solvents.

Additive manufacturing processes for metals (2023)
Book Chapter
Aboulkhair, N. T., Bosio, F., Gilani, N., Phutela, C., Hague, R. J., & Tuck, C. J. (2023). Additive manufacturing processes for metals. In Quality Analysis of Additively Manufactured Metals: Simulation Approaches, Processes, and Microstructure Properties (201-258). Elsevier. https://doi.org/10.1016/b978-0-323-88664-2.00016-6

Additive manufacturing (AM) processes are a family of net-shaped manufacturing systems that are widely being used and adopted for their distinctive characteristics. Recently, AM processes have positioned themselves to be worthy of playing a role in r... Read More about Additive manufacturing processes for metals.

Innate immune cell instruction using micron-scale 3D objects of varied architecture and polymer chemistry: The ChemoArchiChip (2023)
Journal Article
Vassey, M., Ma, L., Kämmerling, L., Mbadugha, C., Trindade, G. F., Figueredo, G. P., Pappalardo, F., Hutchinson, J., Markus, R., Rajani, S., Hu, Q., Winkler, D. A., Irvine, D. J., Hague, R., Ghaemmaghami, A. M., Wildman, R., & Alexander, M. R. (2023). Innate immune cell instruction using micron-scale 3D objects of varied architecture and polymer chemistry: The ChemoArchiChip. Matter, 6(3), 887-906. https://doi.org/10.1016/j.matt.2023.01.002

To design effective immunomodulatory implants, innate immune cell interactions at the surface of biomaterials need to be controlled and understood. The architectural design freedom of two-photon polymerization is used to produce arrays of surface-mou... Read More about Innate immune cell instruction using micron-scale 3D objects of varied architecture and polymer chemistry: The ChemoArchiChip.

Strategies for Integrating Metal Nanoparticles with Two-Photon Polymerization Process: Toward High Resolution Functional Additive Manufacturing (2023)
Journal Article
Im, J., Liu, Y., Hu, Q., Trindade, G. F., Parmenter, C., Fay, M., He, Y., Irvine, D. J., Tuck, C., Wildman, R. D., Hague, R., & Turyanska, L. (2023). Strategies for Integrating Metal Nanoparticles with Two-Photon Polymerization Process: Toward High Resolution Functional Additive Manufacturing. Advanced Functional Materials, 33(39), Article 2211920. https://doi.org/10.1002/adfm.202211920

This study reports the successful fabrication of complex 3D metal nanoparticle–polymer nanocomposites using two-photon polymerization (2PP). Three complementary strategies are detailed: in situ formation of metal nanoparticles (MeNPs) through a singl... Read More about Strategies for Integrating Metal Nanoparticles with Two-Photon Polymerization Process: Toward High Resolution Functional Additive Manufacturing.

Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals (2022)
Journal Article
Austin, J. S., Cottam, N. D., Zhang, C., Wang, F., Gosling, J. H., Nelson-Dummet, O., James, T. S., Beton, P. H., Trindade, G. F., Zhou, Y., Tuck, C. J., Hague, R., Makarovsky, O., & Turyanska, L. (2023). Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals. Nanoscale, 15(5), 2134–2142. https://doi.org/10.1039/D2NR06429D

All-inorganic perovskite nanocrystals (NCs) with enhanced environmental stability are of particular interest for optoelectronic applications. Here we report on the formulation of CsPbX3 (X is Br or I) inks for inkjet deposition and utilise these NCs... Read More about Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals.

Exploiting Generative Design for Multi-Material Inkjet 3D Printed Cell Instructive, Bacterial Biofilm Resistant Composites (2022)
Preprint / Working Paper
he, Y., Begines, B., Trindade, G., Abdi, M., dubern, J.-F., Prina, E., Hook, A., Choong, G., Ledesma, J., Tuck, C., R. A. J. Rose, F., Hague, R., Roberts, C., De Focatiis, D., Ashcroft, I., Williams, P., Irvine, D., alexander, M., & Wildman, R. Exploiting Generative Design for Multi-Material Inkjet 3D Printed Cell Instructive, Bacterial Biofilm Resistant Composites

As our understanding of disease grows, it is becoming established that treatment needs to be personalized and targeted to the needs of the individual. In this paper we show that multi-material inkjet-based 3D printing, when backed with generative des... Read More about Exploiting Generative Design for Multi-Material Inkjet 3D Printed Cell Instructive, Bacterial Biofilm Resistant Composites.