Skip to main content

Research Repository

Advanced Search

All Outputs (8)

Reactive material jetting of polyimide insulators for complex circuit board design (2018)
Journal Article
Zhang, F., Saleh, E., Vaithilingam, J., Li, Y., Tuck, C., Hague, R., Wildman, R., & He, Y. (2019). Reactive material jetting of polyimide insulators for complex circuit board design. Additive Manufacturing, 25, 477-484. https://doi.org/10.1016/j.addma.2018.11.017

Polyimides are a group of high performance thermal stable dielectric materials used in diverse applications. In this article, we synthesized and developed a high-performance polyimide precursor ink for a Material Jetting (MJ) process. The proposed in... Read More about Reactive material jetting of polyimide insulators for complex circuit board design.

Wireless bioelectronic nanosystems for intracellular communication (2018)
Other
Sanjuán-Alberte, P., Abayzeed, S. A., Fuentes-Domínguez, R., Alea-Reyesd, M. E., Clark, M., Hague, R., Alexander, M., Pérez-García, L., & Rawson, F. (2018). Wireless bioelectronic nanosystems for intracellular communication

In order for the field of bioelectronics to make an impact on healthcare, there is an urgent requirement for the development of “wireless” electronic systems to both sense and actuate cell behaviour. Herein we report the first example of an innovativ... Read More about Wireless bioelectronic nanosystems for intracellular communication.

Optimisation of substrate angles for multi-material and multi-functional inkjet printing (2018)
Journal Article
Vaithilingam, J., Saleh, E., Wildman, R. D., Hague, R. J., & Tuck, C. (2018). Optimisation of substrate angles for multi-material and multi-functional inkjet printing. Scientific Reports, 8, Article 9030. https://doi.org/10.1038/s41598-018-27311-6

Three dimensional inkjet printing of multiple materials for electronics applications are challenging due to the limited material availability, inconsistencies in layer thickness between dissimilar materials and the need to expose the printed tracks o... Read More about Optimisation of substrate angles for multi-material and multi-functional inkjet printing.

A comparison of Ti-6Al-4V in-situ alloying in Selective Laser Melting using simply-mixed and satellited powder blend feedstocks (2018)
Journal Article
Simonelli, M., Aboulkhair, N. T., Cohen, P., Murray, J. W., Clare, A. T., Tuck, C., & Hague, R. J. (in press). A comparison of Ti-6Al-4V in-situ alloying in Selective Laser Melting using simply-mixed and satellited powder blend feedstocks. Materials Characterization, https://doi.org/10.1016/j.matchar.2018.05.039

In-situ alloying within laser powder-bed fusion, specifically Selective Laser Melting (SLM), has been investigated for the formulation of novel alloys from elemental powders to extend the benefits offered by these technologies. Inadequate preparation... Read More about A comparison of Ti-6Al-4V in-situ alloying in Selective Laser Melting using simply-mixed and satellited powder blend feedstocks.

Electrochemically stimulating developments in bioelectronic medicine (2018)
Journal Article
Sanjuan-Alberte, P., Alexander, M. R., Hague, R. J., & Rawson, F. J. (2018). Electrochemically stimulating developments in bioelectronic medicine. Bioelectronic Medicine, 4(1), https://doi.org/10.1186/s42234-018-0001-z

Cellular homeostasis is in part controlled by biological generated electrical activity. By interfacing biology with electronic devices this electrical activity can be modulated to actuate cellular behaviour. There are current limitations in merging e... Read More about Electrochemically stimulating developments in bioelectronic medicine.

Author Correction: Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction (2018)
Journal Article
Hu, Q., Sun, X.-Z., Parmenter, C. D. J., Fay, M. W., Smith, E. F., Rance, G. A., He, Y., Zhang, F., Liu, Y., Irvine, D., Tuck, C., Hague, R., & Wildman, R. (2018). Author Correction: Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction. Scientific Reports, 8(1), Article 3512. https://doi.org/10.1038/s41598-018-21513-8

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

Identification of novel ‘inks’ for 3D printing using high throughput screening: bioresorbable photocurable polymers for controlled drug delivery (2018)
Journal Article
Louzao, I., Koch, B., Taresco, V., Ruiz Cantu, L., Irvine, D. J., Roberts, C. J., Tuck, C. J., Alexander, C., Hague, R. J., Wildman, R. D., & Alexander, M. R. (in press). Identification of novel ‘inks’ for 3D printing using high throughput screening: bioresorbable photocurable polymers for controlled drug delivery. ACS Applied Materials and Interfaces, 10(8), https://doi.org/10.1021/acsami.7b15677

A robust discovery methodology is presented to identify novel biomaterials suitable for 3D printing. Currently the application of Additive Manufacturing is limited by the availability of functional inks, especially in the area of biomaterials-this me... Read More about Identification of novel ‘inks’ for 3D printing using high throughput screening: bioresorbable photocurable polymers for controlled drug delivery.

Effect of annealing on the microstructure and magnetic properties of soft magnetic Fe-Si produced via laser additive manufacturing (2018)
Journal Article
Garibaldi, M., Ashcroft, I., Lemke, J. N., Simonelli, M., & Hague, R. (2018). Effect of annealing on the microstructure and magnetic properties of soft magnetic Fe-Si produced via laser additive manufacturing. Scripta Materialia, 142, 121-125. https://doi.org/10.1016/j.scriptamat.2017.08.042

© 2017 Acta Materialia Inc. We investigate the effect of annealing on the properties of Fe-6.9wt% Si produced by Selective Laser Melting (SLM), a powder-bed additive manufacturing technology. Results show that annealing at 1150 °C for 1 h produces a... Read More about Effect of annealing on the microstructure and magnetic properties of soft magnetic Fe-Si produced via laser additive manufacturing.