Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Off the Grid: a new strategy for material-jet 3D printing with enhanced sub-droplet resolution (2023)
Journal Article
Nelson-Dummett, O., Rivers, G., Gilani, N., Simonelli, M., Tuck, C. J., Wildman, R. D., …Turyanska, L. (2024). Off the Grid: a new strategy for material-jet 3D printing with enhanced sub-droplet resolution. Additive Manufacturing Letters, 8, Article 100185. https://doi.org/10.1016/j.addlet.2023.100185

Drop-on-Demand additive manufacturing could offer a facile solution for scalable on-site manufacturing. With an increasing number of functional materials available for this technology, there are growing opportunities for applications, such as electro... Read More about Off the Grid: a new strategy for material-jet 3D printing with enhanced sub-droplet resolution.

Stable large area drop-on-demand deposition of a conductive polymer ink for 3D-printed electronics, enabled by bio-renewable co-solvents (2023)
Journal Article
Rivers, G., Austin, J. S., He, Y., Thompson, A., Gilani, N., Roberts, N., …Turyanska, L. (2023). Stable large area drop-on-demand deposition of a conductive polymer ink for 3D-printed electronics, enabled by bio-renewable co-solvents. Additive Manufacturing, 66, Article 103452. https://doi.org/10.1016/j.addma.2023.103452

Development of conductive polymer ink formulations with reliable jetting stability and physical properties could offer sustainable routes for scaling-up the 3D-printing of electronics. We report a new poly(3,4-ethylenedioxythiophene) polystyrene sulp... Read More about Stable large area drop-on-demand deposition of a conductive polymer ink for 3D-printed electronics, enabled by bio-renewable co-solvents.