Skip to main content

Research Repository

Advanced Search

All Outputs (79)

Validating a Predictive Structure-Property Relationship by Discovery of Novel Polymers which Reduce Bacterial Biofilm Formation (2019)
Journal Article
Dundas, A. A., Sanni, O., Dubern, J.-F., Dimitrakis, G., Hook, A. L., Irvine, D. J., …Alexander, M. R. (2019). Validating a Predictive Structure-Property Relationship by Discovery of Novel Polymers which Reduce Bacterial Biofilm Formation. Advanced Materials, 31(49), Article 1903513. https://doi.org/10.1002/adma.201903513

ynthetic materials are an everyday component of modern healthcare yet often fail routinely as a consequence of medical‐device‐centered infections. The incidence rate for catheter‐associated urinary tract infections is between 3% and 7% for each day o... Read More about Validating a Predictive Structure-Property Relationship by Discovery of Novel Polymers which Reduce Bacterial Biofilm Formation.

Toward Interpretable Machine Learning Models for Materials Discovery (2019)
Journal Article
Mikulskis, P., Alexander, M. R., & Winkler, D. A. (2019). Toward Interpretable Machine Learning Models for Materials Discovery. Advanced Intelligent Systems, 1(8), Article 1900045. https://doi.org/10.1002/aisy.201900045

Machine learning (ML) and artificial intelligence (AI) methods for modeling useful materials properties are now important technologies for rational design and optimization of bespoke functional materials. Although these methods make good predictions... Read More about Toward Interpretable Machine Learning Models for Materials Discovery.

Methodology for the synthesis of methacrylate monomers using designed single mode microwave applicators (2019)
Journal Article
Dundas, A. A., Hook, A. L., Alexander, M. R., Kingman, S. W., Dimitrakis, G., & Irvine, D. J. (2019). Methodology for the synthesis of methacrylate monomers using designed single mode microwave applicators. Reaction Chemistry and Engineering, 4(8), 1472-1476. https://doi.org/10.1039/c9re00173e

© 2019 The Royal Society of Chemistry. A novel single-well prototype high throughput microwave reactor geometry has been produced and shown to be capable of synthesizing an array of non-commercially available methacrylate monomers. The reactor, which... Read More about Methodology for the synthesis of methacrylate monomers using designed single mode microwave applicators.

Water-Based 3D Inkjet Printing of an Oral Pharmaceutical Dosage Form (2019)
Journal Article
Cader, H. K., Rance, G. A., Alexander, M. R., Gonçalves, A. D., Roberts, C. J., Tuck, C. J., & Wildman, R. D. (2019). Water-Based 3D Inkjet Printing of an Oral Pharmaceutical Dosage Form. International Journal of Pharmaceutics, 564, 359-368. https://doi.org/10.1016/j.ijpharm.2019.04.026

Inkjet printing is a form of additive manufacturing where liquid droplets are selectively deposited onto a substrate followed by solidification. The process provides significant potential advantages for producing solid oral dosage forms or tablets, i... Read More about Water-Based 3D Inkjet Printing of an Oral Pharmaceutical Dosage Form.

Lipids and polymers in pharmaceutical technology: lifelong companions (2019)
Journal Article
Siepmann, J., Faham, A., Clas, S.-D., Boyd, B. J., Jannin, V., Bernkop-Schnürch, A., …Leroux, J.-C. (2019). Lipids and polymers in pharmaceutical technology: lifelong companions. International Journal of Pharmaceutics, 558, 128-142. https://doi.org/10.1016/j.ijpharm.2018.12.080

In pharmaceutical technology, lipids and polymers are considered pillar excipients for the fabrication of most dosage forms, irrespective of the administration route. They play various roles ranging from support vehicles to release rate modifiers, st... Read More about Lipids and polymers in pharmaceutical technology: lifelong companions.

High-Throughput Miniaturized Screening of Nanoparticle Formation via Inkjet Printing (2018)
Journal Article
Styliari, I. D., Conte, C., Pearce, A. K., Hüsler, A., Cavanagh, R. J., Limo, M. J., Gordhan, D., Nieto-Orellana, A., Suksiriworapong, J., Couturaud, B., Williams, P., Hook, A. L., Alexander, M. R., Garnett, M. C., Alexander, C., Burley, J. C., & Taresco, V. (2018). High-Throughput Miniaturized Screening of Nanoparticle Formation via Inkjet Printing. Macromolecular Materials and Engineering, 303(8), 1-9. https://doi.org/10.1002/mame.201800146

The self‐assembly of specific polymers into well‐defined nanoparticles (NPs) is of great interest to the pharmaceutical industry as the resultant materials can act as drug delivery vehicles. In this work, a high‐throughput method to screen the abilit... Read More about High-Throughput Miniaturized Screening of Nanoparticle Formation via Inkjet Printing.

Improved extraction repeatability and spectral reproducibility for liquid extraction surface analysis–mass spectrometry using superhydrophobic–superhydrophilic patterning (2018)
Journal Article
Meurs, J., Alexander, M. R., Levkin, P. A., Widmaier, S., Bunch, J., Barrett, D. A., & Kim, D.-H. (in press). Improved extraction repeatability and spectral reproducibility for liquid extraction surface analysis–mass spectrometry using superhydrophobic–superhydrophilic patterning. Analytical Chemistry, 90(10), https://doi.org/10.1021/acs.analchem.8b00973

A major problem limiting reproducible use of liquid extraction surface analysis (LESA) array sampling of dried surface-deposited liquid samples is the unwanted spread of extraction solvent beyond the dried sample limits, resulting in unreliable data.... Read More about Improved extraction repeatability and spectral reproducibility for liquid extraction surface analysis–mass spectrometry using superhydrophobic–superhydrophilic patterning.

Effect of surfactant on Pseudomonas aeruginosa colonization of polymer microparticles and flat films (2018)
Journal Article
Hüsler, A., Haas, S., Parry, L., Romero, M., Nisisako, T., Williams, P., Wildman, R. D., & Alexander, M. R. (2018). Effect of surfactant on Pseudomonas aeruginosa colonization of polymer microparticles and flat films. RSC Advances, 8(28), https://doi.org/10.1039/c8ra01491d

Micro- and nanoparticles are of great interest because of their potential for trafficking into the body for applications such as low-fouling coatings on medical devices, drug delivery in pharmaceutics and cell carriers in regenerative medicine strate... Read More about Effect of surfactant on Pseudomonas aeruginosa colonization of polymer microparticles and flat films.

Electrochemically stimulating developments in bioelectronic medicine (2018)
Journal Article
Sanjuan-Alberte, P., Alexander, M. R., Hague, R. J., & Rawson, F. J. (2018). Electrochemically stimulating developments in bioelectronic medicine. Bioelectronic Medicine, 4(1), https://doi.org/10.1186/s42234-018-0001-z

Cellular homeostasis is in part controlled by biological generated electrical activity. By interfacing biology with electronic devices this electrical activity can be modulated to actuate cellular behaviour. There are current limitations in merging e... Read More about Electrochemically stimulating developments in bioelectronic medicine.

Synthetic light-curable polymeric materials provide a supportive niche for dental pulp stem cells (2017)
Journal Article
Vining, K. H., Scherba, J. C., Bever, A., Alexander, M. R., Celiz, A. D., & Mooney, D. J. (2018). Synthetic light-curable polymeric materials provide a supportive niche for dental pulp stem cells. Advanced Materials, 30(4), Article 1704486. https://doi.org/10.1002/adma.201704486

Dental disease annually affects billions of patients, and while regenerative dentistry aims to heal dental tissue after injury, existing polymeric restorative materials, or fillings, do not directly participate in the healing process in a bioinstruct... Read More about Synthetic light-curable polymeric materials provide a supportive niche for dental pulp stem cells.

The 3D OrbiSIMS—label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power (2017)
Journal Article
Passarelli, M. K., Pirkl, A., Moellers, R., Grinfeld, D., Kollmer, F., Havelund, R., …Gilmore, I. S. (2017). The 3D OrbiSIMS—label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power. Nature Methods, 14(12), 1175-1183. https://doi.org/10.1038/nmeth.4504

© 2017 Nature America, Inc., part of Springer Nature. All rights reserved. We report the development of a 3D OrbiSIMS instrument for label-free biomedical imaging. It combines the high spatial resolution of secondary ion mass spectrometry (SIMS; unde... Read More about The 3D OrbiSIMS—label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power.

Intracellular drug uptake: a comparison of single cell measurements using ToF-SIMS imaging and quantification from cell populations with LC/MS/MS (2017)
Journal Article
Newman, C. F., Havelund, R., Passarelli, M. K., Marshall, P. S., Francis, I., West, A., …Dollery, C. T. (2017). Intracellular drug uptake: a comparison of single cell measurements using ToF-SIMS imaging and quantification from cell populations with LC/MS/MS. Analytical Chemistry, 89(22), 11944-11953. https://doi.org/10.1021/acs.analchem.7b01436

ToF-SIMS is a label-free imaging method that has been shown to enable imaging of amiodarone in single rat macrophage (NR8383) cells. In this study, we show that the method extends to three other cell lines relevant to drug discovery: human embryonic... Read More about Intracellular drug uptake: a comparison of single cell measurements using ToF-SIMS imaging and quantification from cell populations with LC/MS/MS.

Water contact angle is not a good predictor of biological responses to materials (2017)
Journal Article
Alexander, M. R., & Williams, P. (in press). Water contact angle is not a good predictor of biological responses to materials. Biointerphases, 12(2), Article 02C201. https://doi.org/10.1116/1.4989843

Often the view is expressed that water contact angle (WCA) or other wettability/surface energy measurements made on a material surface can be used to predict cellular attachment to materials, e.g., bacteria attach to hydrophobic surfaces. In this art... Read More about Water contact angle is not a good predictor of biological responses to materials.

Image based machine learning for identification of macrophage subsets (2017)
Journal Article
Rostam, H., Reynolds, P. M., Alexander, M. R., Gadegaard, N., & Ghaemmaghami, A. M. (2017). Image based machine learning for identification of macrophage subsets. Scientific Reports, 7(1), Article 3521. https://doi.org/10.1038/s41598-017-03780-z

Macrophages play a crucial rule in orchestrating immune responses against pathogens and foreign materials. Macrophages have remarkable plasticity in response to environmental cues and are able to acquire a spectrum of activation status, best exemplif... Read More about Image based machine learning for identification of macrophage subsets.

Development and characterization of a stable adhesive bond between a poly(dimethylsiloxane) catheter material and a bacterial biofilm resistant acrylate polymer coating (2017)
Journal Article
Tyler, B. J., Hook, A. L., Pelster, A., Williams, P., Alexander, M. R., & Arlinghaus, H. F. (2017). Development and characterization of a stable adhesive bond between a poly(dimethylsiloxane) catheter material and a bacterial biofilm resistant acrylate polymer coating. Biointerphases, 12(2), Article 02C412. https://doi.org/10.1116/1.4984011

Catheter associated urinary tract infections (CA-UTIs) are the most common health related infections world wide, contributing significantly to patient morbidity and mortality and increased health care costs. To reduce the incidence of these infection... Read More about Development and characterization of a stable adhesive bond between a poly(dimethylsiloxane) catheter material and a bacterial biofilm resistant acrylate polymer coating.

Making Silicone Rubber Highly Resistant to Bacterial Attachment Using Thiol-ene Grafting (2016)
Journal Article
Magennis, E. P., Hook, A. L., Williams, P., & Alexander, M. R. (2016). Making Silicone Rubber Highly Resistant to Bacterial Attachment Using Thiol-ene Grafting. ACS Applied Materials and Interfaces, 8(45), 30780-30787. https://doi.org/10.1021/acsami.6b10986

Biomedical devices are indispensable in modern medicine yet offer surfaces that promote bacterial attachment and biofilm formation, resulting in acute and chronic healthcare-associated infections. We have developed a simple method to graft acrylates... Read More about Making Silicone Rubber Highly Resistant to Bacterial Attachment Using Thiol-ene Grafting.

The impact of surface chemistry modification on macrophage polarisation (2016)
Journal Article
Rostam, H., Singh, S., Salazar, F., Magennis, P., Hook, A. L., Singh, T., …Ghaemmaghami, A. M. (2016). The impact of surface chemistry modification on macrophage polarisation. Immunobiology, 221(11), 1237-1246. https://doi.org/10.1016/j.imbio.2016.06.010

Macrophages are innate immune cells that have a central role in combating infection and maintaining tissue homeostasis. They exhibit remarkable plasticity in response to environmental cues. At either end of a broad activation spectrum are pro-inflamm... Read More about The impact of surface chemistry modification on macrophage polarisation.

The influence of nanotexturing of poly(lactic-co-glycolic acid) films upon human ovarian cancer cell attachment (2016)
Journal Article
Yaşayan, G., Xue, X., Collier, P., Clarke, P., Alexander, M. R., & Marlow, M. (2016). The influence of nanotexturing of poly(lactic-co-glycolic acid) films upon human ovarian cancer cell attachment. Nanotechnology, 27(25), https://doi.org/10.1088/0957-4484/27/25/255102

In this study, we have produced nanotextured poly(lactic-co-glycolic acid) (PLGA) films by using polystyrene (PS) particles as a template to make a polydimethylsiloxane mould against which PLGA is solvent cast. Biocompatible, biodegradable and nanote... Read More about The influence of nanotexturing of poly(lactic-co-glycolic acid) films upon human ovarian cancer cell attachment.

Imaging of Crystalline and Amorphous Surface Regions Using Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS): Application to Pharmaceutical Materials (2016)
Journal Article
Iuraş, A., Scurr, D. J., Boissier, C., Nicholas, M. L., Roberts, C. J., & Alexander, M. R. (2016). Imaging of Crystalline and Amorphous Surface Regions Using Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS): Application to Pharmaceutical Materials. Analytical Chemistry, 88(7), 3481-3487. https://doi.org/10.1021/acs.analchem.5b02621

The structure of a material, in particular the extremes of crystalline and amorphous forms, significantly impacts material performance in numerous sectors such as semiconductors, energy storage, and pharmaceutical products, which are investigated in... Read More about Imaging of Crystalline and Amorphous Surface Regions Using Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS): Application to Pharmaceutical Materials.