Skip to main content

Research Repository

Advanced Search

All Outputs (8)

Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices (2021)
Journal Article
He, Y., Luckett, J., Begines, B., Dubern, J. F., Hook, A. L., Prina, E., …Wildman, R. D. (2022). Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices. Biomaterials, 281, Article 121350. https://doi.org/10.1016/j.biomaterials.2021.121350

Chronic infection as a result of bacterial biofilm formation on implanted medical devices is a major global healthcare problem requiring new biocompatible, biofilm-resistant materials. Here we demonstrate how bespoke devices can be manufactured throu... Read More about Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices.

Immune-instructive materials as new tools for immunotherapy (2021)
Journal Article
Fisher, L. E., Kämmerling, L., Alexander, M. R., & Ghaemmaghami, A. M. (2022). Immune-instructive materials as new tools for immunotherapy. Current Opinion in Biotechnology, 74, 194-203. https://doi.org/10.1016/j.copbio.2021.11.005

Immune instructive materials, are materials with the ability to modulate or mimic the function of immune cells, provide exciting opportunities for developing new therapies in many areas including medical devices, chronic inflammation, cancer, and aut... Read More about Immune-instructive materials as new tools for immunotherapy.

Customisable Tablet Printing: The Development of Multimaterial Hot Melt Inkjet 3D Printing to Produce Complex and Personalised Dosage Forms (2021)
Journal Article
Lion, A., Wildman, R. D., Alexander, M. R., & Roberts, C. J. (2021). Customisable Tablet Printing: The Development of Multimaterial Hot Melt Inkjet 3D Printing to Produce Complex and Personalised Dosage Forms. Pharmaceutics, 13(10), Article 1679. https://doi.org/10.3390/pharmaceutics13101679

One of the most striking characteristics of 3D printing is its capability to produce multi-material objects with complex geometry. In pharmaceutics this translates to the possibility of dosage forms with multi-drug loading, tailored dosing and releas... Read More about Customisable Tablet Printing: The Development of Multimaterial Hot Melt Inkjet 3D Printing to Produce Complex and Personalised Dosage Forms.

Generation and Characterization of a Library of Novel Biologically Active Functional Surfactants (Surfmers) Using Combined High-Throughput Methods (2021)
Journal Article
Cuzzucoli Crucitti, V., Contreas, L., Taresco, V., Howard, S. C., Dundas, A. A., Limo, M. J., …Irvine, D. J. (2021). Generation and Characterization of a Library of Novel Biologically Active Functional Surfactants (Surfmers) Using Combined High-Throughput Methods. ACS Applied Materials and Interfaces, 13(36), 43290-43300. https://doi.org/10.1021/acsami.1c08662

We report the first successful combination of three distinct high-throughput techniques to deliver the accelerated design, synthesis, and property screening of a library of novel, bio-instructive, polymeric, comb-graft surfactants. These three-dimens... Read More about Generation and Characterization of a Library of Novel Biologically Active Functional Surfactants (Surfmers) Using Combined High-Throughput Methods.

Droplet Microfluidic Optimisation Using Micropipette Characterisation of Bio-Instructive Polymeric Surfactants (2021)
Journal Article
Henshaw, C. A., Dundas, A. A., Cuzzucoli Crucitti, V., Alexander, M. R., Wildman, R., Rose, F. R. A. J., …Williams, P. M. (2021). Droplet Microfluidic Optimisation Using Micropipette Characterisation of Bio-Instructive Polymeric Surfactants. Molecules, 26(11), Article 3302. https://doi.org/10.3390/molecules26113302

Droplet microfluidics can produce highly tailored microparticles whilst retaining monodispersity. However, these systems often require lengthy optimisation, commonly based on a trial-and-error approach, particularly when using bio-instructive, polyme... Read More about Droplet Microfluidic Optimisation Using Micropipette Characterisation of Bio-Instructive Polymeric Surfactants.

Sequential Orbitrap Secondary Ion Mass Spectrometry and Liquid Extraction Surface Analysis-Tandem Mass Spectrometry-Based Metabolomics for Prediction of Brain Tumor Relapse from Sample-Limited Primary Tissue Archives (2021)
Journal Article
Meurs, J., Scurr, D. J., Lourdusamy, A., Storer, L. C., Grundy, R. G., Alexander, M. R., …Kim, D.-H. (2021). Sequential Orbitrap Secondary Ion Mass Spectrometry and Liquid Extraction Surface Analysis-Tandem Mass Spectrometry-Based Metabolomics for Prediction of Brain Tumor Relapse from Sample-Limited Primary Tissue Archives. Analytical Chemistry, 93(18), 6947-6954. https://doi.org/10.1021/acs.analchem.0c05087

We present here a novel surface mass spectrometry strategy to perform untargeted metabolite profiling of formalin-fixed paraffin-embedded pediatric ependymoma archives. Sequential Orbitrap secondary ion mass spectrometry (3D OrbiSIMS) and liquid extr... Read More about Sequential Orbitrap Secondary Ion Mass Spectrometry and Liquid Extraction Surface Analysis-Tandem Mass Spectrometry-Based Metabolomics for Prediction of Brain Tumor Relapse from Sample-Limited Primary Tissue Archives.

AbaM Regulates Quorum Sensing, Biofilm Formation and Virulence in Acinetobacter baumannii (2021)
Journal Article
López-Martín, M., Dubern, J.-F., Alexander, M. R., & Williams, P. (2021). AbaM Regulates Quorum Sensing, Biofilm Formation and Virulence in Acinetobacter baumannii. Journal of Bacteriology, 203(8), Article e00635-20. https://doi.org/10.1128/jb.00635-20

Acinetobacter baumannii possesses a single divergent luxR/luxI-type quorum sensing (QS) locus named abaR/abaI. This locus also contains a third gene located between abaR and abaI which we term abaM that codes for an uncharacterized member of the RsaM... Read More about AbaM Regulates Quorum Sensing, Biofilm Formation and Virulence in Acinetobacter baumannii.