Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Synchronous Reluctance Motor Iron Losses: Analytical Model and Optimization (2018)
Conference Proceeding
Mahmoud, H., Degano, M., Bacco, G., Bianchi, N., & Gerada, C. (2018). Synchronous Reluctance Motor Iron Losses: Analytical Model and Optimization. In 2018 IEEE Energy Conversion Congress and Exposition (ECCE) (1640-1647). https://doi.org/10.1109/ECCE.2018.8558292

The complex rotor structure of synchronous reluctance machines causes a high harmonic content in the air-gap flux density and then flux density fluctuations in different iron parts. The importance of determining accurately the total iron losses in th... Read More about Synchronous Reluctance Motor Iron Losses: Analytical Model and Optimization.

Design of PMSM for EMA Employed in Secondary Flight Control Systems (2018)
Conference Proceeding
Giangrande, P., Al-Timimy, A., Galassini, A., Papadopoulos, S., Degano, M., & Galea, M. (2018). Design of PMSM for EMA Employed in Secondary Flight Control Systems. In Proceedings - 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC) (1-6). https://doi.org/10.1109/ESARS-ITEC.2018.8607467

© 2018 IEEE. The more electric aircraft (MEA) initiative aims to improve weight, fuel consumption and maintenance costs of the aircraft, by increasing the use of electric power in actuation systems. Considering this scenario, electromechanical actuat... Read More about Design of PMSM for EMA Employed in Secondary Flight Control Systems.

The Influence of Stator Material on the Power Density and Iron Loss of a High-Performace Starter-Generator for More Electric Aircraft (2018)
Conference Proceeding
Golovanov, D., Xu, Z., Gerada, D., Degano, M., Vakil, G., & Gerada, C. (2018). The Influence of Stator Material on the Power Density and Iron Loss of a High-Performace Starter-Generator for More Electric Aircraft. In 2018 21st International Conference on Electrical Machines and Systems (ICEMS) (169-173). https://doi.org/10.23919/ICEMS.2018.8549390

Maximizing the power density as well as efficiency are two of the main critical aspects for engineers who are designing electrical machines for aerospace applications. Iron losses have a significant impact on the total machine efficiency, thermal sta... Read More about The Influence of Stator Material on the Power Density and Iron Loss of a High-Performace Starter-Generator for More Electric Aircraft.

A Novel Newton-Raphson-Based Searching Method for the MTPA Control of Pmasynrm Considering Magnetic and Cross Saturation (2018)
Conference Proceeding
Wang, S., Degano, M., Kang, J., Galassini, A., & Gerada, C. (2018). A Novel Newton-Raphson-Based Searching Method for the MTPA Control of Pmasynrm Considering Magnetic and Cross Saturation. In Proceedings 2018 XIII International Conference on Electrical Machines (ICEM) (1360-1366). https://doi.org/10.1109/ICELMACH.2018.8506853

Maximum torque per ampere control (MTPA) takes full advantage of the reluctance torque aiming at the minimum copper loss, which can increase the torque output under the minimum current conditions. The traditional MTPA method makes use of equations wi... Read More about A Novel Newton-Raphson-Based Searching Method for the MTPA Control of Pmasynrm Considering Magnetic and Cross Saturation.

Investigation of AC Copper and Iron Losses in High-Speed High-Power Density PMSM (2018)
Conference Proceeding
Al-Timimy, A., Giangrande, P., Degano, M., Galea, M., & Gerada, C. (2018). Investigation of AC Copper and Iron Losses in High-Speed High-Power Density PMSM. In Proceedings - 2018 XIII International Conference on Electrical Machines (ICEM) (263-269). https://doi.org/10.1109/ICELMACH.2018.8507166

This paper presents a detailed investigation of AC copper losses in high-speed high-power density permanent magnet synchronous machine. For parallel strands winding, it is not easy to accurately estimate the AC copper losses using finite element mode... Read More about Investigation of AC Copper and Iron Losses in High-Speed High-Power Density PMSM.