Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat (2022)
Journal Article
Kareem, S. H., Hawkesford, M. J., DeSilva, J., Weerasinghe, M., Wells, D. M., Pound, M. P., …Foulkes, M. J. (2022). Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat. European Journal of Agronomy, 140, Article 126603. https://doi.org/10.1016/j.eja.2022.126603

Root system architecture (RSA) is important in optimizing the use of nitrogen. High-throughput phenotyping techniques may be used to study root system architecture traits under controlled environments. A root phenotyping platform, consisting of germi... Read More about Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat.

Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat (2022)
Journal Article
GRIFFITHS, M., ATKINSON, J. A., Gardiner, L. J., SWARUP, R., POUND, M. P., WILSON, M. H., …WELLS, D. M. (2022). Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat. Journal of Integrative Agriculture, 21(4), 917-932. https://doi.org/10.1016/s2095-3119%2821%2963700-0

The root system architecture (RSA) of a crop has a profound effect on the uptake of nutrients and consequently the potential yield. However, little is known about the genetic basis of RSA and resource adaptive responses in wheat (Triticum aestivum L.... Read More about Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat.