Skip to main content

Research Repository

Advanced Search

All Outputs (4)

An oxygen-sensing mechanism for angiosperm adaptation to altitude (2022)
Journal Article
Abbas, M., Sharma, G., Dambire, C., Marquez, J., Alonso-Blanco, C., Proaño, K., & Holdsworth, M. J. (2022). An oxygen-sensing mechanism for angiosperm adaptation to altitude. Nature, https://doi.org/10.1038/s41586-022-04740-y

Flowering plants (angiosperms) can grow at extreme altitudes, and have been observed growing as high as 6,400 metres above sea level1,2; however, the molecular mechanisms that enable plant adaptation specifically to altitude are unknown. One distingu... Read More about An oxygen-sensing mechanism for angiosperm adaptation to altitude.

Allelic shift in cis-elements of the transcription factor RAP2.12 underlies adaptation associated with humidity in Arabidopsis thaliana (2022)
Journal Article
Lou, S., Guo, X., Liu, L., Song, Y., Zhang, L., Jiang, Y., …Liu, J. (2022). Allelic shift in cis-elements of the transcription factor RAP2.12 underlies adaptation associated with humidity in Arabidopsis thaliana. Science Advances, 8(18), Article eabn8281. https://doi.org/10.1126/sciadv.abn8281

Populations of widespread species are usually geographically distributed through contrasting stresses, but underlying genetic mechanisms controlling this adaptation remain largely unknown. Here, we show that in Arabidopsis thaliana, allelic changes i... Read More about Allelic shift in cis-elements of the transcription factor RAP2.12 underlies adaptation associated with humidity in Arabidopsis thaliana.

Mitochondrial retrograde signaling through UCP1-mediated inhibition of the plant oxygen-sensing pathway (2022)
Journal Article
Barreto, P., Dambire, C., Sharma, G., Vicente, J., Osborne, R., De Carvalho, J. E., …Arruda, P. (2022). Mitochondrial retrograde signaling through UCP1-mediated inhibition of the plant oxygen-sensing pathway. Current Biology, 32(6), 1403-1411.e4. https://doi.org/10.1016/j.cub.2022.01.037

Mitochondrial retrograde signaling is an important component of intracellular stress signaling in eukaryotes. UNCOUPLING PROTEIN (UCP)1 is an abundant plant inner-mitochondrial membrane protein with multiple functions including uncoupled respiration... Read More about Mitochondrial retrograde signaling through UCP1-mediated inhibition of the plant oxygen-sensing pathway.

A Yeast-Based Functional Assay to Study Plant N-Degron – N-Recognin Interactions (2022)
Journal Article
Kozlic, A., Winter, N., Telser, T., Reimann, J., Rose, K., Nehlin, L., …Bachmair, A. (2022). A Yeast-Based Functional Assay to Study Plant N-Degron – N-Recognin Interactions. Frontiers in Plant Science, 12, Article 806129. https://doi.org/10.3389/fpls.2021.806129

The N-degron pathway is a branch of the ubiquitin-proteasome system where amino-terminal residues serve as degradation signals. In a synthetic biology approach, we expressed ubiquitin ligase PRT6 and ubiquitin conjugating enzyme 2 (AtUBC2) from Arabi... Read More about A Yeast-Based Functional Assay to Study Plant N-Degron – N-Recognin Interactions.