Skip to main content

Research Repository

Advanced Search

All Outputs (12)

Encapsulation of copper phenanthroline within horse spleen apoferritin: characterisation, cytotoxic activity and ability to retain temozolomide (2024)
Journal Article
Cassioli, M. L., Fay, M., Turyanska, L., Bradshaw, T. D., Thomas, N. R., & Pordea, A. (2024). Encapsulation of copper phenanthroline within horse spleen apoferritin: characterisation, cytotoxic activity and ability to retain temozolomide. RSC Advances, 14(20), 14008-14016. https://doi.org/10.1039/d3ra07430g

Protein capsules are promising drug delivery vehicles for cancer research therapies. Apoferritin (AFt) is a self-assembling 12 nm diameter hollow nanocage with many desirable features for drug delivery, however, control of drug retention inside the p... Read More about Encapsulation of copper phenanthroline within horse spleen apoferritin: characterisation, cytotoxic activity and ability to retain temozolomide.

Synergy of nanocrystalline carbon nitride with Cu single atom catalyst leads to selective photocatalytic reduction of CO2 to methanol (2024)
Journal Article
LeMercier, T. M., Thangamuthu, M., Kohlrausch, E. C., Chen, Y., Stoppiello, C. T., Fay, M. W., …Khlobystov, A. N. (2024). Synergy of nanocrystalline carbon nitride with Cu single atom catalyst leads to selective photocatalytic reduction of CO2 to methanol. Sustainable Energy and Fuels, 1691-1703. https://doi.org/10.1039/D4SE00028E

Carbon nitride (C3N4) possesses both a band gap in the visible range and a low-lying conduction band potential, suitable for water splitting and CO2 reduction reactions (CO2RR). Yet, bulk C3N4 (b-C3N4) suffers from structural disorder leading to slug... Read More about Synergy of nanocrystalline carbon nitride with Cu single atom catalyst leads to selective photocatalytic reduction of CO2 to methanol.

Atomic-Scale Time-Resolved Imaging of Krypton Dimers, Chains and Transition to a One-Dimensional Gas (2024)
Journal Article
Cardillo-Zallo, I., Biskupek, J., Bloodworth, S., Marsden, E. S., Fay, M. W., Ramasse, Q. M., …Khlobystov, A. N. (2024). Atomic-Scale Time-Resolved Imaging of Krypton Dimers, Chains and Transition to a One-Dimensional Gas. ACS Nano, 18(4), 2958–2971. https://doi.org/10.1021/acsnano.3c07853

Single-atom dynamics of noble-gas elements have been investigated using time-resolved transmission electron microscopy (TEM), with direct observation providing for a deeper understanding of chemical bonding, reactivity, and states of matter at the na... Read More about Atomic-Scale Time-Resolved Imaging of Krypton Dimers, Chains and Transition to a One-Dimensional Gas.

Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response (2022)
Journal Article
Wadge, M. D., Bird, M. A., Sankowski, A., Constantin, H., Fay, M. W., Cooper, T. P., …Grant, D. M. (2023). Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response. Advanced Materials Interfaces, 10(5), Article 2201523. https://doi.org/10.1002/admi.202201523

This study describes the chemical conversion and heat treatment of Ti6Al4V microspheres (Ti6_MS), and the resulting effects on their electrocatalytic properties. The wet-chemical conversion (5.0m NaOH, 60°C, 24h; Sample label: Ti6_TC) converts the to... Read More about Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response.

Etoposide and olaparib polymer-coated nanoparticles within a bioadhesive sprayable hydrogel for post-surgical localised delivery to brain tumours (2020)
Journal Article
McCrorie, P., Mistry, J., Taresco, V., Lovato, T., Fay, M., Ward, I., …Rahman, R. (2020). Etoposide and olaparib polymer-coated nanoparticles within a bioadhesive sprayable hydrogel for post-surgical localised delivery to brain tumours. European Journal of Pharmaceutics and Biopharmaceutics, 157, 108-120. https://doi.org/10.1016/j.ejpb.2020.10.005

Glioblastoma is a malignant brain tumour with a median survival of 14.6 months from diagnosis. Despite maximal surgical resection and concurrent chemoradiotherapy, reoccurrence is inevitable. To try combating the disease at a stage of low residual tu... Read More about Etoposide and olaparib polymer-coated nanoparticles within a bioadhesive sprayable hydrogel for post-surgical localised delivery to brain tumours.

Metabolic characterisation of Magnetospirillum gryphiswaldense MSR-1 using LC-MS-based metabolite profiling (2020)
Journal Article
Abdelrazig, S., Safo, L., Rance, G. A., Fay, M. W., Theodosiou, E., Topham, P. D., …Fernández-Castané, A. (2020). Metabolic characterisation of Magnetospirillum gryphiswaldense MSR-1 using LC-MS-based metabolite profiling. RSC Advances, 10(54), 32548-32560. https://doi.org/10.1039/d0ra05326k

Magnetosomes are nano-sized magnetic nanoparticles with exquisite properties that can be used in a wide range of healthcare and biotechnological applications. They are biosynthesised by magnetotactic bacteria (MTB), such as Magnetospirillum gryphiswa... Read More about Metabolic characterisation of Magnetospirillum gryphiswaldense MSR-1 using LC-MS-based metabolite profiling.

Steric and electronic control of 1,3-dipolar cycloaddition reactions in carbon nanotube nanoreactors (2019)
Journal Article
Miners, S. A., Fay, M. W., Baldoni, M., Besley, E., Khlobystov, A. N., & Rance, G. A. (2019). Steric and electronic control of 1,3-dipolar cycloaddition reactions in carbon nanotube nanoreactors. Journal of Physical Chemistry C, 123(10), 6294-6302. https://doi.org/10.1021/acs.jpcc.9b01190

The use of single-walled carbon nanotubes as effective nanoreactors for preparative bimolecular reactions has been demonstrated for the first time. We show that the extreme spatial confinement of guest reactant molecules inside host carbon nanotubes... Read More about Steric and electronic control of 1,3-dipolar cycloaddition reactions in carbon nanotube nanoreactors.

Three dimensional nanoscale analysis reveals aperiodic mesopores in a covalent organic framework and conjugated microporous polymer (2019)
Journal Article
Stoppiello, C. T., Isla, H., Martínez-Abadía, M., Fay, M. W., Parmenter, C. D. J., Roe, M. J., …Khlobystov, A. N. (2019). Three dimensional nanoscale analysis reveals aperiodic mesopores in a covalent organic framework and conjugated microporous polymer. Nanoscale, 11(6), 2848-2854. https://doi.org/10.1039/c8nr10086a

The integrated analytical approach developed in this study offers a powerful methodology for the structural characterization of complex molecular nanomaterials. Structures of a covalent organic framework based on boronate esters (COF-5) and a conjuga... Read More about Three dimensional nanoscale analysis reveals aperiodic mesopores in a covalent organic framework and conjugated microporous polymer.

Comparative nanostructure analysis of gasoline turbocharged direct injection and diesel soot-in-oil with carbon black (2018)
Journal Article
Pfau, S., La Roca, A., Haffner-Staton, E., Rance, G., Fay, M., Brough, R., & Malizia, S. (2018). Comparative nanostructure analysis of gasoline turbocharged direct injection and diesel soot-in-oil with carbon black. Carbon, 139, 342-352. https://doi.org/10.1016/j.carbon.2018.06.050

Two gasoline turbocharged direct injection (GTDI) and two diesel soot-in-oil samples were compared with one flame-generated soot sample. High resolution transmission electron microscopy imaging was employed for the initial qualitative assessment of t... Read More about Comparative nanostructure analysis of gasoline turbocharged direct injection and diesel soot-in-oil with carbon black.

A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes based on ionic complexes with organic dyes (2016)
Journal Article
Lutsyk, P., Arif, R., Hruby, J., Bukivskyi, A., Vinijchuk, O., Shandura, M., …Rozhin, A. (2016). A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes based on ionic complexes with organic dyes. Light: Science and Applications, 5, Article e16028. https://doi.org/10.1038/lsa.2016.28

© 2016 CIOMP. All rights reserved. The multifunctional properties of carbon nanotubes (CNTs) make them a powerful platform for unprecedented innovations in a variety of practical applications. As a result of the surging growth of nanotechnology, nano... Read More about A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes based on ionic complexes with organic dyes.

Enantiopure titanocene complexes: direct evidence for paraptosis in cancer cells (2016)
Journal Article
Cini, M., Williams, H. E. L., Fay, M. W., Searle, M., Woodward, S., & Bradshaw, T. D. (2016). Enantiopure titanocene complexes: direct evidence for paraptosis in cancer cells. Metallomics, https://doi.org/10.1039/C5MT00297D

Tolerated by normal tissues, anti-cancer therapies based on titanium compounds are limited by low efficacy/selectivity and lack of understanding of their mode(s) of action. In vitro antitumour activity and mode of cell death incurred by enantiopure T... Read More about Enantiopure titanocene complexes: direct evidence for paraptosis in cancer cells.

Ligand-induced control of photoconductive gain and doping in a hybrid graphene-quantum dot transistor (2015)
Journal Article
Turyanska, L., Makarovsky, O., Svatek, S. A., Beton, P. H., Mellor, C. J., Patanè, A., Eaves, L., Thomas, N. R., Fay, M. W., Marsden, A. J., & Wilson, N. R. (2015). Ligand-induced control of photoconductive gain and doping in a hybrid graphene-quantum dot transistor. Advanced Electronic Materials, 1(7), 1500062. https://doi.org/10.1002/aelm.201500062

In graphene devices decorated with a layer of near-infrared colloidal PbS quantum dots (QDs), the choice of the QD capping ligands and the integrity of the QD layer have a strong influence on the doping, carrier mobility, and photoresponse. By using... Read More about Ligand-induced control of photoconductive gain and doping in a hybrid graphene-quantum dot transistor.