Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Understanding ground and excited-state molecular structure in strong magnetic fields using the maximum overlap method (2022)
Journal Article
Wibowo, M., Huynh, B. C., Cheng, C. Y., Irons, T. J. P., & Teale, A. M. (2022). Understanding ground and excited-state molecular structure in strong magnetic fields using the maximum overlap method. Molecular Physics, Article e2152748. https://doi.org/10.1080/00268976.2022.2152748

The maximum overlap method (MOM) provides a simple but powerful approach for performing calculations on excited states by targeting solutions with non-Aufbau occupations from a reference set of molecular orbitals. In this work, the MOM is used to acc... Read More about Understanding ground and excited-state molecular structure in strong magnetic fields using the maximum overlap method.

An Embedded Fragment Method for Molecules in Strong Magnetic Fields (2022)
Journal Article
Speake, B. T., Irons, T. J. P., Wibowo, M., Johnson, A. G., David, G., & Teale, A. M. (2022). An Embedded Fragment Method for Molecules in Strong Magnetic Fields. Journal of Chemical Theory and Computation, 18(12), 7412-7427. https://doi.org/10.1021/acs.jctc.2c00865

An extension of the embedded fragment method for calculations on molecular clusters is presented, which includes strong external magnetic fields. The approach is flexible, allowing for calculations at the Hartree-Fock, current-density-functional theo... Read More about An Embedded Fragment Method for Molecules in Strong Magnetic Fields.