Skip to main content

Research Repository

Advanced Search

All Outputs (2)

A lithium-air battery and gas handling system demonstrator (2023)
Journal Article
Jordan, J. W., Vailaya, G., Holc, C., Jenkins, M., McNulty, R. C., Puscalau, C., …Johnson, L. R. (2024). A lithium-air battery and gas handling system demonstrator. Faraday Discussions, 248, 381-391. https://doi.org/10.1039/d3fd00137g

The lithium-air (Li-air) battery offers one of the highest practical specific energy densities of any battery system at >400 W h kgsystem−1. The practical cell is expected to operate in air, which is flowed into the positive porous electrode where it... Read More about A lithium-air battery and gas handling system demonstrator.

Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response (2022)
Journal Article
Wadge, M. D., Bird, M. A., Sankowski, A., Constantin, H., Fay, M. W., Cooper, T. P., …Grant, D. M. (2023). Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response. Advanced Materials Interfaces, 10(5), Article 2201523. https://doi.org/10.1002/admi.202201523

This study describes the chemical conversion and heat treatment of Ti6Al4V microspheres (Ti6_MS), and the resulting effects on their electrocatalytic properties. The wet-chemical conversion (5.0m NaOH, 60°C, 24h; Sample label: Ti6_TC) converts the to... Read More about Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response.