Skip to main content

Research Repository

Advanced Search

All Outputs (6)

Novel sources of variation in grain yield, components and mineral traits identified in wheat amphidiploids derived from thinopyrum bessarabicum (Savul. & rayss) Á. löve (poaceae) under saline soils in India (2020)
Journal Article
Khokhar, J. S., Sareen, S., Tyagi, B. S., Wilson, L., Young, S., King, J., King, I., & Broadley, M. R. (2020). Novel sources of variation in grain yield, components and mineral traits identified in wheat amphidiploids derived from thinopyrum bessarabicum (Savul. & rayss) Á. löve (poaceae) under saline soils in India. Sustainability, 12(21), Article 8975. https://doi.org/10.3390/su12218975

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Salt-affected soils constrain wheat production globally. A wild wheat species, Thinopyrum bessarabicum (Savul. & Rayss) Á. Löve (Poaceae), and its derivatives are tolerant of high external NaC... Read More about Novel sources of variation in grain yield, components and mineral traits identified in wheat amphidiploids derived from thinopyrum bessarabicum (Savul. & rayss) Á. löve (poaceae) under saline soils in India.

Variation in key leaf photosynthetic traits across wheat wild relatives is accession dependent not species dependent (2020)
Journal Article
McAusland, L., Vialet‐Chabrand, S., Jauregui, I., Burridge, A., Hubbart-Edwards, S., Fryer, M. J., King, I. P., King, J., Pyke, K., Edwards, K. J., Carmo‐Silva, E., Lawson, T., & Murchie, E. H. (2020). Variation in key leaf photosynthetic traits across wheat wild relatives is accession dependent not species dependent. New Phytologist, 228(6), 1767-1780. https://doi.org/10.1111/nph.16832

©2020 The Authors. New Phytologist ©2020 New Phytologist Trust The wild relatives of modern wheat represent an underutilized source of genetic and phenotypic diversity and are of interest in breeding owing to their wide adaptation to diverse environm... Read More about Variation in key leaf photosynthetic traits across wheat wild relatives is accession dependent not species dependent.

Development of Wheat-Aegilops caudata Introgression Lines and Their Characterization Using Genome-Specific KASP Markers (2020)
Journal Article
Grewal, S., Othmeni, M., Walker, J., Hubbart Edwards, S., Yang, C. Y., Scholefield, D., Ashling, S., Isaac, P., King, I. P., & King, J. (2020). Development of Wheat-Aegilops caudata Introgression Lines and Their Characterization Using Genome-Specific KASP Markers. Frontiers in Plant Science, 11, Article 606. https://doi.org/10.3389/fpls.2020.00606

© Copyright © 2020 Grewal, Othmeni, Walker, Hubbart-Edwards, Yang, Scholefield, Ashling, Isaac, King and King. Aegilops caudata L. [syn. Ae. markgrafii (Greuter) Hammer], is a diploid wild relative of wheat (2n = 2x = 14, CC) and a valuable source fo... Read More about Development of Wheat-Aegilops caudata Introgression Lines and Their Characterization Using Genome-Specific KASP Markers.

Exploiting the genome of Thinopyrum elongatum to expand the gene pool of hexaploid wheat (2020)
Journal Article
Baker, L., Grewal, S., Yang, C. Y., Hubbart-Edwards, S., Scholefield, D., Ashling, S., Burridge, A. J., Przewieslik-Allen, A. M., Wilkinson, P. A., King, I. P., & King, J. (2020). Exploiting the genome of Thinopyrum elongatum to expand the gene pool of hexaploid wheat. TAG Theoretical and Applied Genetics, 133, 2213–2226. https://doi.org/10.1007/s00122-020-03591-3

© 2020, The Author(s). Key message: One hundred and thirty four introgressions from Thinopyrum elongatum have been transferred into a wheat background and were characterised using 263 SNP markers. Abstract: Species within the genus Thinopyrum have be... Read More about Exploiting the genome of Thinopyrum elongatum to expand the gene pool of hexaploid wheat.

Novel sources of variation in grain Zinc (Zn) concentration in bread wheat germplasm derived from Watkins landraces (2020)
Journal Article
Khokhar, J. S., King, J., King, I. P., Young, S. D., Foulkes, M. J., De Silva, J., Weerasinghe, M., Mossa, A., Griffiths, S., Riche, A. B., Hawkesford, M., Shewry, P., & Broadley, M. R. (2020). Novel sources of variation in grain Zinc (Zn) concentration in bread wheat germplasm derived from Watkins landraces. PLoS ONE, 15(2), Article e0229107. https://doi.org/10.1371/journal.pone.0229107

A diverse panel of 245 wheat genotypes, derived from crosses between landraces from the Watkins collection representing global diversity in the early 20th century and the modern wheat cultivar Paragon, was grown at two field sites in the UK in 2015-1... Read More about Novel sources of variation in grain Zinc (Zn) concentration in bread wheat germplasm derived from Watkins landraces.

Resistance to wheat rusts identified in wheat/Amblyopyrum muticum chromosome introgressions (2020)
Journal Article
Fellers, J. P., Matthews, A., Fritz, A. K., Rouse, M. N., Grewal, S., Hubbart‐Edwards, S., King, I. P., & King, J. (2020). Resistance to wheat rusts identified in wheat/Amblyopyrum muticum chromosome introgressions. Crop Science, 60(4), 1957-1964. https://doi.org/10.1002/csc2.20120

© 2020 The Authors. Crop Science © 2020 Crop Science Society of America Wheat (Triticum aestivum L.) rusts are a worldwide production problem. Plant breeders have used genetic resistance to combat these fungi. However, single-gene resistance is rapid... Read More about Resistance to wheat rusts identified in wheat/Amblyopyrum muticum chromosome introgressions.