Skip to main content

Research Repository

Advanced Search

All Outputs (6)

Improving crop yield potential: Underlying biological processes and future prospects (2022)
Journal Article
Burgess, A. J., Masclaux‐Daubresse, C., Strittmatter, G., Weber, A. P. M., Taylor, S. H., Harbinson, J., …Baekelandt, A. (2023). Improving crop yield potential: Underlying biological processes and future prospects. Food and Energy Security, 12(1), Article e435. https://doi.org/10.1002/fes3.435

The growing world population and global increases in the standard of living both result in an increasing demand for food, feed and other plant‐derived products. In the coming years, plant‐based research will be among the major drivers ensuring food s... Read More about Improving crop yield potential: Underlying biological processes and future prospects.

Phosphite treatment can improve root biomass and nutrition use efficiency in wheat (2022)
Journal Article
Mohammed, U., Davis, J., Rossall, S., Swarup, K., Czyzewicz, N., Bhosale, R., …Swarup, R. (2022). Phosphite treatment can improve root biomass and nutrition use efficiency in wheat. Frontiers in Plant Science, 13, Article 1017048. https://doi.org/10.3389/fpls.2022.1017048

Phosphite represents a reduced form of phosphate that belongs to a class of crop growth-promoting chemicals termed biostimulants. Previous research has shown that phosphite application can enhance root growth, but its underlying mechanism, especially... Read More about Phosphite treatment can improve root biomass and nutrition use efficiency in wheat.

Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat (2022)
Journal Article
Kareem, S. H., Hawkesford, M. J., DeSilva, J., Weerasinghe, M., Wells, D. M., Pound, M. P., …Foulkes, M. J. (2022). Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat. European Journal of Agronomy, 140, Article 126603. https://doi.org/10.1016/j.eja.2022.126603

Root system architecture (RSA) is important in optimizing the use of nitrogen. High-throughput phenotyping techniques may be used to study root system architecture traits under controlled environments. A root phenotyping platform, consisting of germi... Read More about Root architecture and leaf photosynthesis traits and associations with nitrogen-use efficiency in landrace-derived lines in wheat.

Prediction of Photosynthetic, Biophysical, and Biochemical Traits in Wheat Canopies to Reduce the Phenotyping Bottleneck (2022)
Journal Article
Robles-Zazueta, C. A., Pinto, F., Molero, G., Foulkes, M. J., Reynolds, M. P., & Murchie, E. H. (2022). Prediction of Photosynthetic, Biophysical, and Biochemical Traits in Wheat Canopies to Reduce the Phenotyping Bottleneck. Frontiers in Plant Science, 13, Article 828451. https://doi.org/10.3389/fpls.2022.828451

To achieve food security, it is necessary to increase crop radiation use efficiency (RUE) and yield through the enhancement of canopy photosynthesis to increase the availability of assimilates for the grain, but its study in the field is constrained... Read More about Prediction of Photosynthetic, Biophysical, and Biochemical Traits in Wheat Canopies to Reduce the Phenotyping Bottleneck.

Identifying variation for N-use efficiency and associated traits in amphidiploids derived from hybrids of bread wheat and the genera Aegilops, Secale, Thinopyrum and Triticum (2022)
Journal Article
Nehe, A., King, J., King, I. P., Murchie, E. H., & Foulkes, M. J. (2022). Identifying variation for N-use efficiency and associated traits in amphidiploids derived from hybrids of bread wheat and the genera Aegilops, Secale, Thinopyrum and Triticum. PLoS ONE, 17(4 April), Article e0266924. https://doi.org/10.1371/journal.pone.0266924

Future genetic progress in wheat grain yield will depend on increasing biomass and this must be achieved without commensurate increases in nitrogen (N) fertilizer inputs to minimize environmental impacts. In recent decades there has been a loss of ge... Read More about Identifying variation for N-use efficiency and associated traits in amphidiploids derived from hybrids of bread wheat and the genera Aegilops, Secale, Thinopyrum and Triticum.

X-ray CT reveals 4D root system development and lateral root responses to nitrate in soil (2022)
Journal Article
Griffiths, M., Mellor, N., Sturrock, C. J., Atkinson, B. S., Johnson, J., Mairhofer, S., …Wells, D. M. (2022). X-ray CT reveals 4D root system development and lateral root responses to nitrate in soil. Plant Phenome Journal, 5(1), Article e20036. https://doi.org/10.1002/ppj2.20036

The spatial arrangement of the root system, termed root system architecture, is important for resource acquisition as it directly affects the soil zone explored. Methods for phenotyping roots are mostly destructive, which prevents analysis of roots o... Read More about X-ray CT reveals 4D root system development and lateral root responses to nitrate in soil.