Skip to main content

Research Repository

Advanced Search

All Outputs (10)

Spatially resolved molecular analysis of host response to medical device implantation using the 3D OrbiSIMS highlights a critical role for lipids (2024)
Journal Article
Suvannapruk, W., Fisher, L. E., Luckett, J. C., Edney, M. K., Kotowska, A. M., Kim, D. H., Scurr, D. J., Ghaemmaghami, A. M., & Alexander, M. R. (2024). Spatially resolved molecular analysis of host response to medical device implantation using the 3D OrbiSIMS highlights a critical role for lipids. Advanced Science, 11(15), Article 2306000. https://doi.org/10.1002/advs.202306000

A key goal for implanted medical devices is that they do not elicit a detrimental immune response. Macrophages play critical roles in the modulation of the host immune response and are the cells responsible for persistent inflammatory reactions to im... Read More about Spatially resolved molecular analysis of host response to medical device implantation using the 3D OrbiSIMS highlights a critical role for lipids.

Optimization of diffuse Raman spectroscopy for in-vivo quantification of foreign body response in a small animal model (2023)
Journal Article
Dooley, M., Luckett, J., Alexander, M. R., Matousek, P., Dehghani, H., Ghaemmaghami, A. M., & Notingher, I. (2023). Optimization of diffuse Raman spectroscopy for in-vivo quantification of foreign body response in a small animal model. Biomedical Optics Express, 14(12), 6592-6606. https://doi.org/10.1364/boe.512118

Diffuse Raman spectroscopy (DRS) allows subsurface molecular analysis of optically turbid samples. Numerical modeling of light propagation was used as a method for improving the design of an DRS instrument to maximize the signal to noise ratio (SNR)... Read More about Optimization of diffuse Raman spectroscopy for in-vivo quantification of foreign body response in a small animal model.

Optimisation of diffuse Raman spectroscopy for in-vivo quantification of foreign body response in small animal model (2023)
Journal Article
Dooley, M., Luckett, J., Alexander, M. R., Matousek, P., Dehghani, H., Ghaemmaghami, A. M., & Notingher, I. (2023). Optimisation of diffuse Raman spectroscopy for in-vivo quantification of foreign body response in small animal model. Biomedical Optics Express, 14(12), 6592-6606. https://doi.org/10.1364/BOE.512118

Diffuse Raman spectroscopy (DRS) allows subsurface molecular analysis of optically turbid samples. Numerical modelling of light propagation was used as a method for improving the design of an DRS instrument to maximize the signal to noise ratio (SNR)... Read More about Optimisation of diffuse Raman spectroscopy for in-vivo quantification of foreign body response in small animal model.

Conformational analysis and interaction of the Staphylococcus aureus transmembrane peptidase AgrB with its AgrD propeptide substrate (2023)
Journal Article
Bardelang, P., Murray, E. J., Blower, I., Zandomeneghi, S., Goode, A., Hussain, R., Kumari, D., Siligardi, G., Inoue, K., Luckett, J., Doutch, J., Emsley, J., Chan, W. C., Hill, P., Williams, P., & Bonev, B. B. (2023). Conformational analysis and interaction of the Staphylococcus aureus transmembrane peptidase AgrB with its AgrD propeptide substrate. Frontiers in Chemistry, 11, Article 1113885. https://doi.org/10.3389/fchem.2023.1113885

Virulence gene expression in the human pathogen, S. aureus is regulated by the agr (accessory gene regulator) quorum sensing (QS) system which is conserved in diverse Gram-positive bacteria. The agr QS signal molecule is an autoinducing peptide (AIP)... Read More about Conformational analysis and interaction of the Staphylococcus aureus transmembrane peptidase AgrB with its AgrD propeptide substrate.

Discovery of a polymer resistant to bacterial biofilm, swarming, and encrustation (2023)
Journal Article
Dubern, J. F., Hook, A. L., Carabelli, A. M., Chang, C. Y., Lewis-Lloyd, C. A., Luckett, J. C., Burroughs, L., Dundas, A. A., Humes, D. J., Irvine, D. J., Alexander, M. R., & Williams, P. (2023). Discovery of a polymer resistant to bacterial biofilm, swarming, and encrustation. Science Advances, 9(4), Article eadd7474. https://doi.org/10.1126/sciadv.add7474

Innovative approaches to prevent catheter-associated urinary tract infections (CAUTIs) are urgently required. Here, we describe the discovery of an acrylate copolymer capable of resisting single- and multispecies bacterial biofilm formation, swarming... Read More about Discovery of a polymer resistant to bacterial biofilm, swarming, and encrustation.

Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices (2021)
Journal Article
He, Y., Luckett, J., Begines, B., Dubern, J. F., Hook, A. L., Prina, E., Rose, F. R., Tuck, C. J., Hague, R. J., Irvine, D. J., Williams, P., Alexander, M. R., & Wildman, R. D. (2022). Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices. Biomaterials, 281, Article 121350. https://doi.org/10.1016/j.biomaterials.2021.121350

Chronic infection as a result of bacterial biofilm formation on implanted medical devices is a major global healthcare problem requiring new biocompatible, biofilm-resistant materials. Here we demonstrate how bespoke devices can be manufactured throu... Read More about Ink-jet 3D printing as a strategy for developing bespoke non-eluting biofilm resistant medical devices.

Chemosensitization of temozolomide-resistant pediatric diffuse midline glioma using potent nanoencapsulated forms of a N(3)-propargyl analogue (2021)
Journal Article
Heravi Shargh, V., Luckett, J., Bouzinab, K., Paisey, S., Turyanska, L., Singleton, W. G., Lowis, S., Gershkovich, P., Bradshaw, T. D., Stevens, M. F., Bienemann, A., & Coyle, B. (2021). Chemosensitization of temozolomide-resistant pediatric diffuse midline glioma using potent nanoencapsulated forms of a N(3)-propargyl analogue. ACS Applied Materials and Interfaces, 13(30), 35266-35280. https://doi.org/10.1021/acsami.1c04164

The lack of clinical response to the alkylating agent temozolomide (TMZ) in pediatric diffuse midline/intrinsic pontine glioma (DIPG) has been associated with O6-methylguanine-DNA-methyltransferase (MGMT) expression and mismatch repair deficiency. He... Read More about Chemosensitization of temozolomide-resistant pediatric diffuse midline glioma using potent nanoencapsulated forms of a N(3)-propargyl analogue.

Gaussia luciferase as a reporter for quorum sensing in staphylococcus aureus (2020)
Journal Article
Blower, I., Tong, C., Sun, X., Murray, E., Luckett, J., Chan, W., Williams, P., & Hill, P. (2020). Gaussia luciferase as a reporter for quorum sensing in staphylococcus aureus. Sensors, 20(15), 1-12. https://doi.org/10.3390/s20154305

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Gaussia luciferase (GLuc) is a secreted protein with significant potential for use as a reporter of gene expression in bacterial pathogenicity studies. To date there are relatively few example... Read More about Gaussia luciferase as a reporter for quorum sensing in staphylococcus aureus.

Inkjet based 3D Printing of bespoke medical devices that resist bacterial biofilm formation (2020)
Preprint / Working Paper
He, Y., Begines, B., Luckett, J., Dubern, J.-F., Hook, A., Prina, E., Rose, F. R., Tuck, C., Hague, R., Irvine, D., Williams, P., Alexander, M. R., & Wildman, R. D. Inkjet based 3D Printing of bespoke medical devices that resist bacterial biofilm formation

We demonstrate the formulation of advanced functional 3D printing inks that prevent the formation of bacterial biofilms in vivo. Starting from polymer libraries, we show that a biofilm resistant object can be 3D printed with the potential for shape a... Read More about Inkjet based 3D Printing of bespoke medical devices that resist bacterial biofilm formation.

Combinatorial discovery of polymers resistant to bacterial attachment (2012)
Journal Article
Hook, A. L., Chang, C.-Y., Yang, J., Luckett, J., Cockayne, A., Atkinson, S., Mei, Y., Bayston, R., Irvine, D. J., Langer, R., Anderson, D. G., Williams, P., Davies, M. C., & Alexander, M. R. (2012). Combinatorial discovery of polymers resistant to bacterial attachment. Nature Biotechnology, 30(9), 868-875. https://doi.org/10.1038/nbt.2316

Bacterial attachment and subsequent biofilm formation pose key challenges to the optimal performance of medical devices. In this study, we determined the attachment of selected bacterial species to hundreds of polymeric materials in a high-throughput... Read More about Combinatorial discovery of polymers resistant to bacterial attachment.